59100 PRATO - Via del Vergaio, 19 Tel/fax 0574/41.843 E-mail: <u>atomei@libero.it</u> p.iva 01728910975 c.f. TMOLRT61P06D612D

COMUNE DI CARMIGNANO

REGOLAMENTO URBANISTICO

Studio di Microzonazione Sismica di l° livello ai sensi del DPGR.n.53/R/11 e della Del.G.R.741/2012

Relazione tecnica

Modificata a seguito delle osservazioni successive all'adozione del RU

IL GEOLOGO

Sommario

1	Preme	essa	2
	1.1 I	prodotti dello studio di MS 1º livello	4
2		one e delimitazione delle aree di indagine	
3	La rac	colta dati geognostici esistenti	6
	3.1 R	ange di velocità P e S per le varie litologie	7
4		ta geologico-tecnica per la microzonazione sismica e delle indagini (Tavv.GT01/02/0	
	9		
	4.1 B	acchereto (Tav.GT01)	11
	4.2 Ca	armignano (Tav.GT02)	11
	4.3 Co	omeana (Tav.GT03)	11
	4.4 Se	eano (Tav.GT04)	12
5	Le pro	ve HVSR	12
	5.1 B	revi cenni sulla tecnica HVSR	12
	5.2 A	ttrezzatura	14
	5.3 E	laborazione	14
	5.4 M	lonografie misure HVSR	16
	5.4.1	Bacchereto	16
	5.4.2	Carmignano	17
	5.4.3	Comeana	18
	5.4.4	Seano	21
	5.4.5	Alcune considerazioni generali sui dati HVSR nelle aree indagate	25
6	La car	ta delle Microzone Omogenee in Prospettiva Sismica (MOPS), delle frequenze fondam	ıentali
e	della peri	colosità sismica locale Tavv.MS01/02/03/04)	25
	6.1 La	a legenda delle carte MOPS	26
	6.1.1	Zone stabili	27
	6.1.2	Zone stabili suscettibili di amplificazioni locali	28
	6.1.3	Zone suscettibili di instabilità	29
	6.1.4	Frequenze fondamentali delle coperture da prove HVSR	30
	6.2 Le	e carte MOPS del territorio comunale di Carmignano	32
	6.2.1	Bacchereto (Tav.MS01)	32
	6.2.2	Carmignano (Tav.MS02)	33
	6.2.3	Comeana (Tav.MS03)	34
	6.2.4	Seano (Tav.MS04)	35
	- د د د مرد م	u schode tecniche delle singele misure LIVCD	27
1	Appendice	e: schede tecniche delle singole misure HVSR	3/

Indagini di microzonazione sismica

1 Premessa

Risulta ormai largamente riconosciuto che la microzonazione sismica (MS) è uno strumento molto utile per il governo del territorio, per la progettazione e per la pianificazione per l'emergenza ai fini della prevenzione sismica e della valutazione del rischio sismico.

La microzonazione sismica ha infatti lo scopo di individuare e riconoscere, ad una scala sufficientemente di dettaglio (comunale o sub comunale), le condizioni geologiche locali che possono modificare sensibilmente le caratteristiche del moto sismico atteso (ampiezza dello scuotimento) o possono produrre deformazioni permanenti rilevanti per le costruzioni e le infrastrutture.

I risultati dello studio di MS sono sintetizzati in una carta del territorio nella quale sono indicate:

- le zone stabili, nelle quali non si ipotizzano effetti locali di alcuna natura (litotipi assimilabili al substrato sismico in affioramento con morfologia pianeggiante o poco inclinata) e pertanto gli scuotimenti attesi sono equivalenti a quelli forniti dagli studi di pericolosità di base (valori di accelerazione indicati negli allegati alle NTC 2008 d.m. 14.01.2008);
- le zone stabili suscettibili di amplificazione sismica, dove il moto sismico viene modificato a causa delle caratteristiche litostratigrafiche (presenza di coperture sedimentarie) e/o morfometriche del territorio (pendenze versanti, creste, valli strette, ecc.), anche sepolte;
- le **zone suscettibili di instabilità**, cioè suscettibili di attivazione/riattivazione di fenomeni di deformazione permanente del terreno indotti o innescati dal sisma (instabilità di versante, liquefazioni, fagliazioni superficiali, cedimenti differenziali, ecc.).

Il documento tecnico di riferimento per la realizzazione degli studi di MS è rappresentato dagli "Indirizzi e criteri per la microzonazione sismica" (di seguito indicato con la sigla ICMS) approvati il 13 novembre 2008 dalla Conferenza delle Regioni e delle Province autonome opportunamente integrato dalle "Specifiche tecniche regionali per l'elaborazione di indagini e studi di microzonazione sismica" approvate con la delibera GR Toscana n.261/2011 e aggiornate con la delibera GRT n.741/2012.

Gli ICMS individuano tre livelli di approfondimento, con complessità ed impegno crescenti, in funzione dei diversi contesti e dei diversi obiettivi degli studi di MS:

- livello 1, propedeutico ai successivi studi di MS, consiste in una raccolta organica e ragionata di dati di
 natura geologica, geofisica e geotecnica e di informazioni preesistenti e/o acquisite appositamente al
 fine di suddividere il territorio in microzone qualitativamente omogenee dal punto di vista del
 comportamento sismico. Il prodotto finale è la carta delle "Microzone Omogenee in prospettiva sismica
 (MOPS)";
- **livello 2**, con il quale si introduce l'elemento quantitativo associato alle zone omogenee (MOPS) mediante metodologie di analisi numerica di tipo semplificato (abachi regionalizzati, modellazione 1D, leggi empiriche) e l'esecuzione di ulteriori e più mirate indagini. Tale approfondimento è finalizzato alla realizzazione della "Carta di Microzonazione Sismica";
- **livello 3**, rappresenta il livello più approfondito che permette di giungere ad una microzonazione del territorio basata su metodologie analitiche di tipo quantitativo. L'elaborato conclusivo dello studio è la "Carta di Microzonazione Sismica con approfondimenti".

La normativa regionale della Toscana (d.P.G.R n.53R/2011 "Regolamento di attuazione dell'art.62 della L.R. n.51/2005 in materia di indagini geologiche") prevede, come supporto agli strumenti urbanistici, la redazione obbligatoria di uno studio di microzonazione di **livello 1 "pesante"** (Tabella 1), dove ai contenuti dello studio di primo livello degli ICMS si aggiungono misure di microtremori (HVSR) realizzate in campagna per integrare l'informazione, sostanzialmente bibliografica, con una valutazione qualitativa delle frequenze fondamentali dei depositi sedimentari e delle amplificazioni attese del moto sismico, in modo da ottenere una informazione già di buona significatività per le attività di pianificazione.

Tabella 1 – indagini, analisi ed elaborati del livello 1 di MS (da del.GRT 741/2012)

LIVELLO 1

INDAGINI MINIME OBBLIGATORIE	 <u>Raccolta di tutti i dati pregressi esistenti nell'area</u>: rilievi geologici, geomorfologici, geologico-tecnici, indagini geofisiche, sondaggi e stratigrafie
	desunte da pozzi;
	Rilevamenti geologici di controllo sul terreno;
	 <u>Nuove indagini: Esecuzione di ulteriori indagini geofisiche e geotecniche,</u> qualora la raccolta dei dati pregressi non consenta la ricostruzione di un quadro conoscitivo sufficientemente attendibile rispetto agli obiettivi del livello 1;
	Misura passive del rumore ambientale, mediante tecnica a stazione singola;
ANALISI	Sintesi dei dati e delle cartografie disponibili;
ED ELABORAZIONI	Rilettura, sintesi dei dati ed eventuali nuovi rilievi geologici.
PRODOTTI FINALI	<u>Carta delle indagini</u> (sia esistenti che di nuova realizzazione);
OBBLIGATORI	• Carta geologico-tecnica per la microzonazione sismica almeno alla scala
	1:5.000-1.10.000;
	 <u>Carta delle Microzone omogenee in prospettiva sismica (MOPS)</u> almeno alla scala 1:5.000-1.10.000;
	 Relazione tecnica illustrativa della carta MOPS;
	<u>Carta delle frequenze fondamentali</u> dei depositi.

Il principale elaborato a fini pianificatori previsto nel livello 1 pesante è la "Carta delle microzone omogenee in prospettiva sismica (MOPS)", che individua le microzone ove, sulla base di osservazioni geologiche e geomorfologiche e in relazione all'acquisizione, valutazione ed analisi dei dati geognostici e di indagini geofisiche, è possibile individuare la possibile occorrenza delle diverse tipologie di effetti prodotti dall'azione sismica (amplificazioni, instabilità di versante, liquefazione, ecc.).

Di particolare importanza a questo scopo risulta la ricostruzione del modello geologico-tecnico dell'area che dovrà focalizzarsi sulle "coperture" (depositi detritici, sedimenti sciolti, coltri di alterazione) e sulla individuazione dei litotipi che possono rappresentare il substrato rigido (ovvero quei litotipi caratterizzati da valori delle velocità di propagazione delle onde di taglio S – convenzionalmente assunta superiore a 800 m/sec - significativamente maggiori di quelli relativi alle coperture localmente presenti); in particolare dovrà essere realizzata una stima approssimativa della profondità del substrato rispetto al piano di campagna e del contrasto di impedenza sismica atteso all'interfaccia deposito/substrato.

Le finalità degli studi di MS di livello 1 sono quindi:

- individuare il modello geologico di sottosuolo preliminare;
- definire le tipologie di effetti attesi;
- individuare qualitativamente le aree che necessitano di approfondimenti.

L'individuazione delle microzone a diversa propensione di amplificazione della risposta sismica di base fornisce pertanto un supporto conoscitivo della pericolosità sismica locale che permette di orientare le scelte pianificatorie alla scala dello strumento urbanistico comunale e di definire in dettaglio la tipologia di indagini geologico-geofisiche che dovranno essere messe in atto per le varie tipologie di intervento edilizio.

Infine la normativa regionale accoglie e impone la proposta del Gruppo di Lavoro MS (rapporto interno del Dipartimento Protezione Civile – 2011) per una valutazione del <u>livello di qualità della carta MOPS</u>, attraverso una procedura semi-quantitativa multiparametrica, nella quale vengono sommati gli apporti dei vari parametri delle conoscenze di base che contribuiscono alla costruzione della carta MOPS (Tabella 2).

Tabella 2 - Quadro riassuntivo dei parametri e dei relativi indicatori con l'attribuzione dei pesi e dei punteggi (da Del. GRT n.741/2012)

Parametro	Peso	Indicatore		Valutazione ind	icatore (punteggio)
(peso parametro)	Indicatore	indicatore	Nulla (0)	Bassa (0.33)	Media (0.66)	Alta (1)
	0.33	Anno rilevamento	No data	< 2000		> 2000
Carta geologico-tecnica (1)	0.33	Progetto	No data	Altro	Allegato piano urbanistico	Ad hoc
• •	0.33	Scala rilevamento	No data	50.000-26.000	25.000-11.000	10.000-2.000
	0.33	Numero di sondaggi a distruzione	No data	1-5	6-10	>10
Sondaggi a distruzione (0.50)	0.33	Percentuale di celle occupate da sondaggi a distruzione	No data	1-33%	34-66%	>66%
	0.33	Numero sondaggi che arrivano al substrato rigido	No data	1-5	6-10	>10
	0.33	Numero di sondaggi a carotaggio	No data	1-5	6-10	>10
Sondaggi a carotaggio continuo (1)	0.33	Percentuale di celle occupate da sondaggi a carotaggio	No data	1-33%	34-66%	>66%
	0.33	Numero sondaggi che arrivano al substrato rigido	No data	1-5	6-10	>10
	0.33	Numero di misure	No data	1-5	6-10	>10
Indagini geofisiche	0.33	Percentuale di celle occupate da indagini	No data	1-33%	34-66%	>66%
(0.50)	0.33	Percentuale indagini che arrivano al substrato rigido	No data	1-33%	34-66%	>66%
	0.33	Numero di prove	No data	1-5	6-10	>10
Prove geotecniche in situ (Prove	0.33	Percentuale di celle occupate da prove	No data	1-33%	34-66%	>66%
Penetrometriche, ecc.) e di laboratorio (0.25)	0.33	Percentuale prove che arrivano al substrato rigido	No data	1-33%	34-66%	>66%
	0.33	Numero di misure	No data	1-5	6-10	>10
Misure delle frequenze del sito (0.75)	0.33	Percentuale di celle occupate da misure	No data	1-33%	34-66%	>66%
(0.75)	0.33	Classe di affidabilità misure (Albarello et alii)*	No data	Classe A < 33%	Classe A 34-66%	Classe A >66%

^{*} D. Albarello, C. Cesi, V. Eulilli, F. Guerrini, E. Lunedei, E. Paolucci, D.Pileggi, L.M. Puzzilli - II contributo della sismica passiva nella microzonazione di due macroaree abruzzesi. In stampa su Boll.Geofis.Teor.Appl.

La procedura di valutazione di qualità della cartografia è usata:

- in fase di predisposizione dello studio di MS di livello 1 dal soggetto realizzatore, al fine di poter valutare se il quadro conoscitivo desunto sia sufficiente per la redazione dello studio di MS di livello 1 o se al contrario debbano essere effettuati approfondimenti di indagine, anche in relazione alla complessità geologico-tecnica dell'area;
- in fase di controllo sui risultati prodotti, da parte del soggetto validatore (ufficio del Genio Civile competente), come strumento di ausilio e supporto in fase istruttoria.

1.1 I prodotti dello studio di MS 1° livello

Come individuato dalla normativa regionale (vedi Tabella 1) i prodotti attesi dallo studio di MS sono sostanzialmente di tipo cartografico, accompagnati da una relazione tecnica illustrativa:

- a) carta delle indagini,
- b) carta geologica-tecnica per la microzonazione sismica,
- c) carta delle frequenze fondamentali dei depositi,
- d) carta delle microzone omogenee in prospettiva sismica (MOPS),
- e) relazione tecnica illustrativa (il presente documento).

Rispetto agli elaborati previsti le cartografie sono state accorpate due a due, ritenendo tali accoppiamenti utili per una lettura più completa dei risultati non essendo la simbologia utilizzata eccessivamente pesante da rendere difficile la lettura: per quanto riguarda le cartografie delle "indagini" e "geologico-tecnica" è stata valutata più utile la predisposizione di un unico elaborato che permettesse una visione combinata dei due tematismi per rendere esplicita la qualità dell'informazione diretta (indagini) nella individuazione delle informazioni litologiche; la carte "frequenze", realizzata sulla base delle misure speditive di rumore (HVSR), è stata unita alla carta "MOPS" per una migliore visione delle caratteristiche delle microzone omogenee (unitamente alle colonne stratigrafiche tipo).

Per ciascuna delle quattro aree per gli studi di MS individuate per il territorio comunale di Carmigano (vedi capitolo successivo) sono state redatte le relative cartografie in scala 1:5.000. I capitoli seguenti illustrano le modalità di redazione dei vari elaborati previsti e le considerazioni da essi desumibili per lo specifico territorio comunale di Carmignano preso in esame, allo scopo di entrare poi nelle classi di pericolosità sismica che supportano gli studi geologici per la redazione del Regolamento Urbanistico.

2 Selezione e delimitazione delle aree di indagine

La predisposizione degli studi di dettaglio di microzonazione sismica prevede preliminarmente l'individuazione degli areali entro i quali tali approfondimenti devono essere sviluppati; infatti lo studio MS non si estende a tutto il territorio comunale, ma unicamente alle zone urbanizzate o fortemente infrastrutturate.

I criteri per la delimitazione delle aree di indagine sono contenuti nel capitolo 1B1.2 "Criteri per la delimitazione delle aree per la realizzazione della cartografia geologica, geomorfologica, litologico-tecnica" delle Istruzioni tecniche del Programma VEL e sostanzialmente combinano aspetti morfologici, geologici e antropici di interesse ai fini della valutazione degli effetti locali.

Per il territorio comunale di Carmignano le aree da studiare sono state individuate e delimitate nell'ambito della riunione del 04.04.2012 tra i professionisti incaricati e i tecnici della Regione Toscana del Coordinamento regionale prevenzione sismica e dell'Ufficio del Genio Civile di Prato, facendo riferimento alla cartografia di tipo geologico esistente e quindi in relazione alle problematiche geologiche individuate. I principali elementi antropici, in ordine di priorità, sui quali si è ulteriormente basata la delimitazione sono i seguenti:

- 1. numero degli abitanti delle frazioni;
- 2. edifici pubblici e strategici;
- 3. centri storici;
- 4. aree industriali;
- 5. aree urbane in espansione;
- 6. viabilità.

Le aree di interesse, riportate in tutti gli elaborati cartografici, riguardano Carmignano (capoluogo) – La Serra – Santa Cristina e le frazioni di Bacchereto, Comeana e Seano.

L'incontro con i tecnici della Regione Toscana ha permesso anche di definire la tipologia ed il numero delle indagini geofisiche (misure HVSR) necessarie per poter idoneamente sviluppare una cartografia MOPS di

adeguato livello qualitativo e per la predisposizione della carta delle frequenze naturali dei terreni (come previsto per il livello 1 "pesante" normato dalla Regione Toscana).

Un successivo incontro in data 12.10.2012, a valle della campagna di indagini HVSR e del completamento della raccolta dei dati esistenti, ha permesso di validare e confermare definitivamente le indicazioni sulla delimitazione delle aree e sulle indagini di approfondimento concordate nella riunione preliminare svoltasi ad aprile.

3 La raccolta dati geognostici esistenti

La raccolta dei dati esistenti è consistita nel reperimento presso l'archivio dell'Ufficio Tecnico del Comune di Carmignano delle indagini geognostiche realizzate in tutto il territorio comunale come supporto alle pratiche edilizie del periodo 2002-2012 (quelle relative agli anni precedenti erano già disponibili come corredo agli strumenti urbanistici esistenti).

Inoltre, grazie alla disponibilità del dr.geol.Andrea Reggiannini dell'Ufficio del Genio Civile di Prato è stato possibile reperire ulteriori 26 indagini geofisiche di supporto a pratiche depositate presso il Genio Civile stesso.

Infine è stata anche interrogata la banca dati sulle perforazioni profonde e sui pozzi messa a disposizione da ISPRA, rilevando 29 stratigrafie significative per l'intero territorio comunale.

Il totale delle informazioni raccolte ed utilizzate per l'intero territorio comunale è sintetizzato nella tabella seguente.

Tabella 3 – Dati geognostici e geofisici disponibili per l'intero territorio comunale con individuazione delle prove che hanno raggiunto il substrato

	tipo indagine	num indagini	num substrato
	Penetrometria dinamica	107	5
	Penetrometria statica con punta meccanica	321	2
	Penetrometria statica con piezocono	6	
intero territorio	Sondaggio a carotaggio continuo	39	24
comunale	Pozzo profondo	28	25
Comunate	Trincea esplorativa	77	71
	Profilo sismico a rifrazione	32	27
	MASW	17	6
	Microtremore HVSR	36	

Nella successiva Tabella 4 sono riportati, per ciascuna area di approfondimento di microzonazione sismica, il relativo numero di indagini geognostiche e geofisiche presenti e di quelle che hanno raggiunto il substrato.

Come si può notare le indagini di gran lunga prevalenti sono di tipo penetrometrico (statiche o dinamiche) che forniscono di per sé una scarsa informazione ai fini della MS.

L'integrazione delle informazioni mediante la realizzazione di misure di microtremore in campagna, ha permesso di arrivare comunque ad un quadro informativo di base adeguato alla predisposizione delle carte MOPS, come testimoniato dalle valutazioni di qualità riportate nel successivo capitolo 7.

Tabella 4 – Dati geognostici e geofisici disponibili per le quattro aree di approfondimento con studi di MS, con individuazione di quelli che hanno raggiunto il substrato

zona	tipo indagine	num indagini	num substrato
	Penetrometria dinamica	13	
	Penetrometria statica con punta meccanica	3	
Bacchereto	Sondaggio a carotaggio continuo	4	4
Bacchereto	Trincea esplorativa	3	3
	Profilo sismico a rifrazione	5	5
	Microtremore HVSR	5	
	Penetrometria dinamica	17	
	Penetrometria statica con punta meccanica	4	1
	Sondaggio a carotaggio continuo	4	4
Carmignano	Pozzo profondo	8	8
Carringilario	Trincea esplorativa	20	19
	Profilo sismico a rifrazione	5	5
	MASW	6	1
	Microtremore HVSR	8	
	Penetrometria dinamica	32	
	Penetrometria statica con punta meccanica	80	
	Penetrometria statica con piezocono	2	
	Sondaggio a carotaggio continuo	12	5
Comeana	Pozzo profondo	2	2
	Trincea esplorativa	25	23
	Profilo sismico a rifrazione	6	6
	MASW	4	2
	Microtremore HVSR	9	
	Penetrometria dinamica	25	
	Penetrometria statica con punta meccanica	224	
	Sondaggio a carotaggio continuo	5	4
Seano	Pozzo profondo	5	2
Scano	Trincea esplorativa	9	8
	Profilo sismico a rifrazione	8	3
	MASW	4	2
	Microtremore HVSR	14	

3.1 Range di velocità P e S per le varie litologie

L'esame delle indagini geofisiche raccolte ha permesso di pervenire alla definizione di range di variabilità delle velocità delle onde P e V per le varie litologie presenti. La qualità delle indagini svolte non è apparsa sempre sufficientemente adeguata, incrociando i risultati con i dati ottenuti da altri tipi di prospezione disponibili nell'area; pertanto i valori riportati vanno considerati con prudenza soprattutto sui valori estremi o singolari.

In Tabella 5 sono riportati i valori riscontrati nelle varie indagini divisi per litologia e, nel caso di coperture, differenziando i materiali di copertura e di substrato (dedotti incrociando le informazioni geologiche e geologico-tecniche disponibili).

INDAGINI GEOFISICHE COMUNE CARMIGNANO [Vp e Vs per litologia]

ella 5 -	- S Г	in	te	si T	re	2/0	atı	iv	a	al	le	V	el	00	cit	à	d	el	le	0	no	de	P	' e	5			n	П		П	eı	le T	ın	a	ag	jir T	ָ וו	Ť	Ť	TS.	IC	he	? r	_	_
		NOIE																						potrebbe essere fluvio lacustre su caotico	siamo al limite fra alberese e caotico dalle HVSR		dalla forma della HVSR sembrerebbe substrato caotico; l'alto valore di Vp farebbe propendere per caotico alterato invece che fluvio lacustre	qualche dubbio sull'approfondimento della MASW	non ha raggiunto il substrato	è probabile che non sia fluvio lacustre ma alterazione di caotico; vedi anche sondactio GC19626 che si riferisce a caotico		non ha raggiunto il substrato	Vedere instelled in Von Segilor						è probabile che non sia fluvio lacustre ma alterazione di caotico; vedi	iche sondaggio GC19626 che si mensce a caotico					I sondaddio si canisca che è caotico, anche se in carta risulterebb	dal sontaggio si capaco che e cadros, anche se in cana issurenedo macigno (siamo vicini al contatto)
		SA						480	820	ı		İ									İ			od	Sis		р >	пв	ou	, e		2 5	ğ			Ì	Ì		Φ	ä	ı	1263			5	Ë
	4	ď	t							t	t	t	t	3000	3500					t	t				+	t		l			l		t			t	t	t		t	t			Ì	t	
		c									ł	l																																		
	:	۸s						346	371	1100	ı	l						670-920		1200	1200	450	1200		600-640	916			340-410	610-770	650-730	389	850			580	611		800	550-581	890	1054	825	787		380-520
	3	7000-3200					1730-2800			2430		2340-2500	2730-2900	1580-1870	1780-2210	300-2500		2030-3310	2410-3730	2200-3340					2170-2790				1410-2030	2030-2460	2160-2340	020 0400	004-2-016	1942-3055	2421-3415	0200 0080	0785-00+	1425-1558	2700	Ī	136-2314					
		u .						3.4	4.3			·		3-7	ш	- 2		- 2	- 2	25.30	40.45	·			- 2				- 1		- 2			- 1	- 2				·	ļ.	- 2	2.9	•			•
	:	۸s						249	308	00/	6 04						1090-1310	420-520		OUB	800	300-360	200	022-059	380-410	/99			230-260	310-500	290-410	280-330	316-380			950-554	367-489	2	430	358	496	746	456	520	0221-0601	320
	2	Vp	1000-1100	1000-1100	1400-2800	2600-3100	620-850			1400	1355	10-1640	1260-1400	740-780	900-1420	20-1240	1650-2750	930-1450	90-1170	770-1360					1600-1970		2152	450	1070-1270	590-1230	780-880	040 4000	1320	922-1482	513-974	700 4970	0751-06	805	810		644-1031			0000	1500-2000	
		n 2			- 14	- 26		3.1	1.1	5-9		2,3 15	t	000	2-3 9	3-4 9:		5-8 9:	-	3-4	25.30	11	4		4-6 16	4			7-10 10	3-4		9.5	4 4	4-6 9:	8-9	0.7		2-4	14-18	α	H		9	2		8
		۸s						207	190	315	097	l					170-270	170-220		400	400	130-250	230-330	200-350	150-210	353-446		250-300	150-180	160-190	100-170	190-235	190			230-286	223-290		200	g	186	407	227-308	338-401	097-061	225
	1	Vp 560-720	200-600	200-600	620-760	200-600	300-400			490	355	330,790	400-520	300-360	130-420	230-380	420-590	310-500	420-580	320-440					300-400		873		210-380	340-370	270-330	050 050	200-000	385-426	336-450	000 400	300-450	100-188	320		220-410			000	750-500	
		۰ م			2-3			6.3	5 .	9-4-6	5.8	,		1.5			1-2	,	-	- 6	12-15	11	10		က	ω	8-9	7	1.5	1.5		10	7 2		1-2		7		-		2 2	3	00000	6.5		4
_		rifraz ione	rifrazione	rifrazione	AASW	MASW	rifrazione	rifrazione	rifrazione	MASW	rifrazione	rifr omog	rifr omod	rifrazione	rifrazione	rifraz ione	rifrazione	rifraz ione	frazione	rifrazione	rifrazione	MASW	AASW	MASW	rifrazione	MASW	rifrazione	MASW	rifrazione	rifrazione	rifrazione	MASW	MASW	frazione	rifrazione	AASW	MASW	rifrazione	rifrazione	MASW	MASW+rifr	AASW	AASW	AASW	ritrazione	MASW
oer litologia	Ī	Substrato		MACIGNO		САОПСО		ONDA		CAUTICO		0 000		САОПСО	Ē			ALBERESE		ALBERESE					САОПСО		САОПСО	MACIGNO	MacignoLONDA	САОПСО		MacignoLONDA				ABBRI	ACIICO ARNE S POLO	MACIGNO	САОПСО		MACIGNO			POLO		САОПСО
INDAGINI GEOFISICHE COMUNE CARMIGNANO [Vp e Vs per litologia]		complesso captico e olistostromi				_	olistostromi	ecenti			complesso caotico e olistostromi	o mamo con arcilliti	marne e marne con ardilliti	stromi			arenarie con argilliti e siltiti N	calcari mamosi A		calcari mamosi A				otico e olistostromi		complesso caotico e olistostromi	sabbie e argille	arenarie con argilliti e siltiti		sabbie e argille	olistostromi	limi e alluvioni recenti	siltiti		ie con argilliti e siltiti	gabbri		=		nilliti e siltiti		e siltiti				complesso caotico e olistostromi C
ISICHE COMUNE		Tormazione CAOTICO CAOTICO		MACIGNO		САОПСО		7	tre su Caot		CAUICO	CICE			E			ALBERESE		ALBERESE	T	su Caot	36		alluvioni recenti su Caot		fluvio-lacustre su Caot	MACIGNO	alluvioni recenti su mgL	fluvio-lacustre su Caot		alluvioni recenti su mgL	ellii sa Caoi					MACIGNO	aot	MACIGNO	MACIGNO	MACIGNO	fluvio-lacustre su Caot	MARNE S.POLO	MACIGNO	САОПСО
AGINI GEOF		n. prova localita 259 Bacchereto				Bacchereto	reto	Seano	Comeana	385	Raccharato	T	Carmignano	Carmignano		Comeana			Comeana	604 Comeana	Comeana	Comeana	Seano	na	Seano	640 Seano	641 Comeana	642 Carmignano		644 Seano	Seano	Seano	650 Carmignano	Carmignano	Carmignano	Bacchereto	655 Carmignan	Carmignano	Seano	Carmignano	31 Poggio Malva	34 Carmignano	65 Comeana	666 Carmignano	/9	668 Carmignano

Ciascuna verticale di indagine è suddivisa in max 4 orizzonti, per evidenziare i valori delle velocità delle onde P e S in eventuali orizzonti di alterazione o litologici differenti (in corrispondenza delle coperture)

In Tabella 6 sono poi riportati i range riscontrati per ciascuna litologia, che possono costituire un utile punto di riferimento nella programmazione delle indagini geofisiche (tipologia, estensione, ecc.) che dovranno accompagnare le fasi esecutive degli interventi edilizi.

I valori riscontrati per la Formazione di Sillano e per quello che viene definito Complesso Caotico sono stati raccolti insieme in quanto il Complesso Caotico rappresenta la Formazione di Sillano (o termine corrispondente, genericamente chiamato anche "Complesso di base") là dove la stessa ha funzionato da orizzonte di sovrascorrimento per le sue elevate caratteristiche di plasticità (orizzonti prevalentemente siltitico-argilliti); poiché tutta la zona di indagine è interessata da complessi episodi di sovrascorrimento delle formazioni della Falda Toscana e della Falda Ligure, non appare possibile effettuare a priori una distinzione netta fra le zone più francamente tettonizzate (Complesso Caotico) e quelle meno disturbate (Formazione di Sillano) e quindi è parso preferibile raccogliere insieme tutti i dati disponibili segnalando la particolare variabilità di tale tipo di substrato.

Tabella 6 – Range di variabilità delle velocità P e S nei litotipi presenti nell'area di studio riscontrati dall'esame delle indagini geofisiche disponibili dalla raccolta dati esistenti

		orizzon	te altera	zione			roccia i	n posto		
	spessore	Vp min	Vp max	Vs min	Vs max	Vp min	Vp max	Vs min	Vs max	NOTE
Formazione di M.Morello [ALBERESE]	1-4 m	200	1400	200	500	1800	3500	700	1200	
Complesso Caotico e Formazione di Sillano	3-8 m	300	700	150	400	1100	3200	600	1200	
Macigno	2-4 m	200	800	170	500	1000	2400	600	1200	
Marne di S.Polo	2-6 m	300	700	200	500	1200	2900	600	800	pochi dati
Fluvio lacustre-alluvioni recenti [3-20 m]	1-5 m	200	400	100	250	800	2000	250	400	

4 La Carta geologico-tecnica per la microzonazione sismica e delle indagini (Tavv.GT01/02/03/04)

La cartografia di base geologico-tecnica per la microzonazione sismica, prevista per giungere alla definizione della carta MOPS, è stata sviluppata in scala 1:5.000 per ciascuna delle quattro aree del comune.

È stata prodotta integrando, a scala di dettaglio, le cartografie geologiche, geomorfologiche e litotecniche prodotte per lo studio di supporto al Piano Strutturale unitamente a tutti i dati litologici, stratigrafici e litotecnici acquisiti con la raccolta dati (per i dettagli descrittivi degli elaborati di Piano si rimanda alla specifica relazione illustrativa dello studio geologico).

Particolare cura è stata rivolta ad individuare, anche attraverso rilevamenti di controllo in loco, la delimitazione dei depositi di copertura (con riferimento a quelli con spessore maggiore di 3 metri) e la ricostruzione delle forme geomorfologiche (in particolare dei fenomeni gravitativi di versante e delle aree instabili) nonché nella individuazione del substrato roccioso.

Ciascuna carta è corredata da alcune sezioni geologico-tecniche orientate sia trasversalmente che longitudinalmente rispetto ai principali elementi geologico-strutturali dell'area, al fine di permettere una migliore descrizione e una più immediata comprensione del modello geologico di sottosuolo.

La legenda delle carte, studiata in prospettiva sismica, prevede l'accorpamento delle informazioni sia geologico formazionali che litologiche in unità che presentano una risposta analoga alla sollecitazione sismica; pertanto le informazioni risultano sintetizzate e il numero di "tipi" geologico-tecnici è ridotto rispetto alle carte descrittive geologiche s.l. o esplicative delle modalità di comportamento geomeccanico legate alla litologia anche a scala ridotta.

In particolare le informazioni sul substrato geologico sono state raccolte in due tipologie:

- flysh calcarei e arenacei con alternanze di litotipi, stratificati [ALS alternanze di litotipi, stratificati della legenda ICMS 2008 versione 2.0] che comprende tutte le formazioni francamente lapidee e che quindi presentano una risposta alla sollecitazione sismica ti tipo sostanzialmente rigido, quali Formazione del Macigno, del Macigno di Londa o di Cervarola, delle Marne di S.Polo, di M.Morello (o Alberese), Gabbri, Basalti e Serpentiniti;
- substrato non rigido, con assetto caotico, molto fratturato [NR substrato geologico non rigido della legenda ICMS 2008 versione 2.0] raccoglie le formazioni con litologie che presentano un comportamento "plastico" alla scala della sollecitazione sismica e che quindi possono non rappresentare un substrato sismico in termini di velocità delle onde S (Vs), quali il Complesso Caotico, la Formazione di Sillano (in zona generalmente molto fratturata) e le brecce più o meno cementate.

Per quanto riguarda le coperture, le informazioni di carattere geologico-tecnico hanno permesso di considerarle omogenee, sempre alla scala del sisma (cioè dove gli spessori di orizzonti a differente valori di rigidità e di impedenza sismica assumono significatività se superiori ai 5-10 metri e con continuità areale estesa). In particolare:

- nelle due aree di indagine dove si rilevano depositi fluvio-lacustri e alluvionali recenti (Comeana e Seano) le coperture sono state attribuite mediamente alle sabbie argillose, miscela di sabbia e limo di bacino intramontano [SCin] della legenda proposta negli ICMS 2008 e s.m.i.; infatti si tratta di depositi granulometricamente molto variabili, connessi ad ambienti deposizionali che hanno visto nel tempo rapide variazioni di competenza delle correnti fluide di trasporto dei sedimenti. I depositi generatisi presentano quindi una elevata variabilità sia verticale che orizzontale, in spazi ristretti, delle dimensioni granulometriche e delle tessiture che comunque alla scala della sollecitazione sismica possono essere ritenuti omogenei (come confermato anche dalle misure di microtremore che non mostrano picchi intermedi nel corpo sedimentario di copertura).
- per le zone di Bacchereto e Carmignano, le coperture sono invece costituite da falde detritiche o corpi di frana se con spessori superiori a 3m; in tal caso la granulometria dei materiali risulta più grossolana avendo subito un trasporto molto limitato e attribuibili alle *ghiaie argillose, miscela di ghiaia, sabbia e argilla* degli ICMS 2008 di falda detritica [GCfd].

La carta riporta anche l'individuazione e la natura delle indagini esistenti, integrandole con le nuove indagini di microtremore a stazione singola (HVSR) effettuate appositamente per il presente studio.

Le informazioni relative alle indagini sono state utilizzate per la verifica di qualità prevista dalla "procedura semiquantitativa" delle Specifiche tecniche regionali per la microzonazione sismica allegate alla Del.GRT.n.741/2012, come meglio dettagliato nel successivo capitolo 6.

Di seguito vengono brevemente riportate alcune considerazioni relative a ciascuna delle quattro aree del Comune.

4.1 Bacchereto (Tav.GT01)

L'abitato di Bacchereto si sviluppa in una zona complessa di sovrascorrimento ove vengono a contatto formazioni Liguridi (Formazione M.Morello, Formazione di Sillano, Complesso Caotico) con quelle della Falda Toscana (Macigno). Le formazioni in posto risultano ovunque sub-affioranti, coperte da modeste coltri di alterazione con spessori massimi di qualche metro.

Dal punto di vista morfologico l'abitato si sviluppa su una sorta di ampia cengia sub-pianeggiante orientata NO-SE, posta a mezza costa di un versante con immersione, a tratti accentuata, in direzione NE; la direzione SO-NE è anche quella delle principali linee di fratturazione e quindi anche dei maggiori impluvi del reticolo idrografico.

Le coperture detritico-colluviali sono concentrate nelle zone di impluvio a minor pendenza (spesso zone di accumulo di movimenti gravitativi che hanno interessato spessori non rilevanti della roccia in posto alterata o fratturata) e presentano spessori massimi intorno ai 3-4 metri (rilevati con prove dirette e indirette).

4.2 Carmignano (Tav.GT02)

Come per l'abitato di Bacchereto, anche Carmigano si sviluppa in una zona complessa di sovrascorrimento ove vengono a contatto formazioni Liguridi (Formazione M.Morello, Complesso Caotico) con quelle della Falda Toscana (Macigno di Londa, Marne di S.Polo).

Le aree urbanizzate si sviluppano su due crinali ortogonali principali, impostati sulle litologie più tenaci (Macigno di Londa, Marne di S.Polo, Formazione di M.Morello), mentre le parti di fondovalle, non urbanizzate, insistono sul Complesso Caotico; le scarse indagini dirette presenti nell'area, confermano la presenza di coperture detritico-colluviali di spessori modesti (dell'ordine di 1-2 metri) e solo localmente si rinvengono spessori di alterazione della roccia in posto che possono raggiungere i 7-8 metri (come anche confermato da alcune delle prospezioni di sismica attiva disponibili).

4.3 Comeana (Tav.GT03)

L'urbanizzazione di Comeana si sviluppa prevalentemente nella fascia di raccordo fra le ultime propaggini sud-orientali della dorsale del Monte Albano e la pianura fiorentina. La geologia di superficie della zona è attribuita ai depositi fluvio-lacustri che terminano verso SO sui rilievi impostati sulla Formazione di M.Morello. La geometria ed i rapporti reciproci tra le formazioni presenti al di sotto dei depositi fluviolacustri appare legata alle complesse fasi tettoniche che, nella zona, hanno portato al sovrascorrimento (embriciato e spesso con ripetizioni delle serie) dei complessi Liguridi sulle formazioni della Falda Toscana. Le sezioni geologiche disegnate trasversalmente alle strutture geologiche principali descrivono, pur con dubbi interpretativi sulla precisa localizzazione e sulle pendenze delle superfici di sovrascorrimento e dei contatti tettonici, l'andamento sepolto del substrato dei depositi lacustri. Tale ricostruzione ha tenuto conto sia del "raccordo" con i rilievi geologici dei comuni contermini (Poggio a Caiano, Signa e Lastra a Signa) sia dei purtroppo rarissimi dati di indagini dirette, sia infine della interpretazione delle prove HVSR specificatamente realizzate. Si assiste pertanto, da SO verso NE, al susseguirsi di tre "fasce" con andamento appenninico (NE-SO) costituite dalla Formazione di M.Morello, dal Complesso Caotico e dal Macigno di Londa. Lo spessore ricostruito dei depositi fluvio-lacustri, la cui base costituisce in genere l'interfaccia con il substrato sismico (meno evidente quando insistono sul Complesso Caotico), varia da qualche metro a circa 20 metri procedendo da SO verso NE. I dati diretti che evidenziano il raggiungimento del substrato sono solo 4 e tutti localizzati nel margine SO della zona ricompresa nello studio. Negli areali impostati sul substrato lapideo affiorante (dorsale sudorientale) gli spessori delle coperture detritico-colluviali raggiungono valori modesti dell'ordine di 1-2 metri.

La delicatezza della definizione delle zone di substrato caratterizzate dal Complesso Caotico (cioè da prevalenti litologie siltitico-argillitiche fortemente tettonizzate) risiede nel fatto che esso difficilmente raggiunge valori di Vs che lo facciano intendere come substrato sismico ("bedrock"), creando quindi delle zone all'interno dell'area di pianura che risponderanno in modo presumibilmente differente al sisma rispetto a zone con substrato più rigido e Vs più elevata (Formazione di M.Morello e Macigno di Londa) dove maggiore sarà l'effetto di amplificazione dello scuotimento dovuto all'elevato contrasto di impedenza.

4.4 Seano (Tav.GT04)

L'abitato principale si sviluppa sulla pianura costituita da alluvioni recenti depositatesi in sequenza su lembi residuali dei depositi fluvio-lacustri dell'ampio bacino Firenze-Prato-Pistoia. Al di sotto dei depositi, che presentano spessori mai superiori a qualche decina di metri (approfondendosi da SO verso NE), si trovano, da SO verso NE, tre fasce distinte con orientamento appenninico: una prima fascia appartenente alla Formazione del Macigno di Londa, alla quale succede una fascia impostata sul Complesso Caotico (sulla quale si sviluppa l'abitato principale di Seano) seguita infine da una fascia nuovamente impostata sul Macigno di Londa (loc.Campiglioli, Bussolaio e zona industriale). La presenza delle tre fasce è stata ricostruita sia basandosi sulla continuità del contesto geologico presente nel limitrofo comune di Poggio a Caiano, sia sulla base delle prove HVSR di seguito descritte.

5 Le prove HVSR

Come più volte ricordato, la normativa della Regione Toscana prescrive già al livello 1 della MS la predisposizione di misure di microtremore a stazione singola; infatti queste misure permettono di avere, già a questa scala di approfondimento, dati quali-quantitativi per l'individuazione di possibili fenomeni di amplificazione della sollecitazione sismica e una misura della frequenza fondamentale di vibrazione dei depositi (che costituisce una indicazione di particolare importanza per la valutazioni di possibili fenomeni di risonanza dei manufatti e quindi della necessità di assumere particolari accorgimenti progettuali o escludere particolari tipologie costruttive in aree specifiche).

La campagna di misure strumentali è stata realizzata nell'ambito dei quattro centri abitati individuati, distribuendo i punti di indagine in modo uniforme in ciascuna area in esame, tenendo altresì conto della distribuzione delle altre indagini pregresse disponibili e delle condizioni di pericolosità geologica del sito.

5.1 Brevi cenni sulla tecnica HVSR

La tecnica HVSR (Horizontal to Vertical Spectral Ratios) è basata sulla misura dei rapporti medi fra le ampiezze spettrali delle componenti orizzontali e verticali del rumore sismico ambientale misurato nelle tre direzioni ortogonali del moto. Le *frequenze di risonanza naturali* corrispondono ai massimi della curva dei rapporti spettrali in funzione della frequenza. L'ampiezza di questi massimi è <u>qualitativamente</u> proporzionale all'entità del contrasto di impedenza sismica esistente alla base della copertura.

Considerazioni quali-quantitative, derivanti da valori mediamente osservati, permettono di poter assumere (alla scala dello studio di MS Livello 1) che la frequenza di risonanza f_0 di una copertura sedimentaria di spessore H sovrapposta a un basamento rigido e in condizioni di stratificazione piana è data dal rapporto fra la velocità media delle onde S nel sedimento (Vs) e 4 volte lo spessore H, (cioè f_0 = Vs/4H); è quindi possibile risalire dalla frequenza di risonanza misurata all'ordine di grandezza dello spessore H della copertura una volta nota la velocità delle onde di taglio (Vs) o, viceversa, a quest'ultima se lo spessore H è noto.

La misura della funzione H/V richiede l'acquisizione del rumore sismico ambientale in un singolo punto per tempi dell'ordine di diverse decine di minuti, allo scopo di garantire la misura del campo di rumore generato da una molteplicità di sorgenti dalle diverse direzioni dello spazio. La misura viene effettuata utilizzando un sistema di acquisizione tri-direzionale caratterizzato da sufficiente sensibilità. I dati raccolti sono quindi analizzati per determinare i rapporti medi fra le componenti spettrali del rumore misurate sul piano orizzontale e verticale.

Sono anche stati sviluppati specifici test statistici per valutare l'adeguatezza delle condizioni sperimentali alle richieste del metodo (Sesame, 2002) ai quali si aggiungono ulteriori criteri "fisici" (D.Albarello e S.Castellaro: *Tecniche sismiche passive: indagini a stazione singola* – Ingegneria Sismica n.2/2011) per giungere ad una classificazione delle misure utile a fornire una indicazione immediata circa la qualità della singola misura H/V, con lo scopo di aiutare gli operatori nella fase interpretativa e nel confronto con altri dati osservati: la classificazione costituisce non tanto un elemento per scartare misure che non raggiungono requisiti ritenuti adeguati, quanto un *warning* per avvisare l'operatore sulla necessità di approfondire, attraverso correlazioni con altre misure (sia dirette sia indirette) e una visione di area più ampia, il risultato della singola prova.

L'interpretazione delle curve H/V risulta agevole in condizioni di stratificazione piano parallela e in presenza di contrasti di impedenza significativi alla base dello strato sedimentario. Il progressivo allontanamento da queste condizioni rende sempre più problematico l'utilizzo dei dati H/V per caratterizzare il sottosuolo a partire da *modelli interpretativi semplici* (da cui l'ausilio dei warning della classificazione di qualità delle misure); pertanto entrano in gioco *criteri interpretativi* che cercano di mettere a sistema tutte le informazioni geologiche dirette ed indirette disponibili per lo specifico luogo in esame.

Le misure HVSR ai fini della MS di livello 1 si prestano a due ordini di interpretazioni:

- qualitativo l'insieme dei dati ottenuti permette di identificare le aree dove esistono fenomeni di risonanza sismica nel campo delle frequenze di interesse ingegneristico (0.5-10 Hz – cioè il range di frequenze di risonanza di edifici e manufatti);
- semi-qualitativo alle misure sono associate stime grossolane sia dello spessore delle coperture responsabili del fenomeno della risonanza, sia dell'entità del contrasto di impedenza responsabile degli effetti osservati (vedi abachi preliminari di Tabella 7); questo tipo di risultato non sostituisce un'analisi di dettaglio, ma ha lo scopo (sotto stretto controllo geologico) di fornire indicazioni preliminari sulla struttura di sottosuolo e dare indicazioni per orientare le indagini successive di approfondimento.

Tabella 7 – Abachi preliminari per una stima semi-qualitativa dello spessore coperture (a) e dell'entità del contrasto sismico (b)

f_0 (Hz)	h (m)	
< 1	> 100	Centinaia di metri
1 - 2	50 - 100	
2 - 3	30 - 50	
3 - 5	20 - 30	Decine di metri
5-8	10 - 20	
8 - 20	5 - 10	
> 20	< 5	Qualche metro

b)

a)

H/V >3 Alto contrasto

2<H/V<3 Basso Contrasto

5.2 Attrezzatura

Le prove HVSR eseguite per questo studio si è utilizzato uno specifico strumento con le seguenti caratteristiche:

• Sismografo SR04S3 GeoBox della ditta Sara Electronic Instruments di Perugia, equipaggiato con tre velocimetri con frequenza 4,5Hz.

• Alimentazione: 10-16Vdc o da batteria interna < 1W

Numero canali: 3 a 24 bit (ΣΔ)

Range dinamico: 124dB (144dB, 24 bit effettivi [enob], fra 0.1 e 10Hz)

Campionamento: simultaneo sui tre canali

• Sampling rates: da 10-600 Hz

Real Time Clock: +/-10ppm (-20/+50°C)

Precisione rispetto a UTC: <50μs

Formato dati: protocollo binario SADC20HS

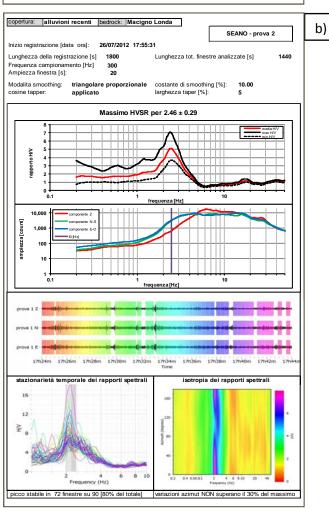
Velocità: 115200 baud

5.3 Elaborazione

Le elaborazioni delle registrazioni effettuate sono state eseguite con il software Geopsy 2.9.0 (software opensource sviluppato e mantenuto da un team nato con il progetto internazionale Sesame e coordinato da Marc Wathelet).

Per la verifica della rispondenza ai criteri statistici definiti dal progetto Sesame in merito alla affidabilità della registrazione, opportunamente completati con i criteri definiti da Albarello-Castellaro 2011, viene utilizzato uno specifico foglio di calcolo le cui uscite sono riportate nelle schede relative a ciascuna misura effettuata (in Appendice).

L'elaborazione dei dati prevede che per ciascuna misura vengano individuati i picchi di H/V significativi da analizzare singolarmente per rilevarne la significatività anche in chiave di qualità della misura.


Le schede di output di ciascuna misura riportano le informazioni "di campagna" del sito oggetto di indagine (fig.1a, redatta sulla base degli standard proposti nel progetto Sesame), le principali assunzioni adottate per l'analisi delle registrazioni e quindi i risultati "grafici" dell'elaborazione (fig.1b) e la verifica del soddisfacimento dei criteri per giungere all'attribuzione della classe di qualità della misura e ai valori qualitativi su profondità del substrato e contrasto di impedenza (fig.1c, elaborati secondo i criteri Sesame, i criteri aggiuntivi Albarello-Castellaro e sulla base degli abachi preliminari di Tabella 7).

In accordo con i tecnici della Regione Toscana del Coordinamento regionale prevenzione sismica, dai criteri statistici proposti dal progetto Sesame è stato escluso il "V C" in quanto probabilmente formulato in maniera non corretta (le schede di output comunque riportano il calcolo di tale parametro, anche se non è tenuto in conto per la definizione della classe di qualità della misura).

Là dove siano presenti più picchi in un'unica registrazione, l'elaborazione prevede una prima scansione della registrazione su tutto il range di frequenze significative comprese fra 0.2 Hz e 50 Hz (sempre allegata al fine di rendersi conto della forma del grafico H/V), quindi una successiva scansione con range di frequenze campionate più ristretto (intorno al picco relativo) per evidenziare le caratteristiche dello specifico picco di interesse e valutare la qualità della misura in quello specifico range.

operatore: Peruzzi - Mantovani latitudine: 43,83262N longitudine: 11,02968E quota s.l.m.: 37,5 nome stazione: prova 2 orientamento strumento rispetto al Nord: 59° tipo stazione: SARA SR04HS tipo sensori: velocimetri 4,5 Hz nome file: MT_2012726_175531_SAF gain: freq.campion.[Hz]: 300 durata rec. [mm:ss]: 30.00 VENTO assente debole file file file file file file file fi							SEANO - prova 2
latitudine: 43,83262N longitudine: 11,02968E quota s.l.m.: 37,5 nome stazione: prova 2 orientamento strumento rispetto al Nord: 59° prova 2 orientamento strumento rispetto al Nord: 59° prova 2 orientamento strumento rispetto al Nord: 59° prova 2 orientamento strumento rispetto al Nord: 59° prova 2 orientamento strumento rispetto al Nord: 59° prova 2 orientamento strumento rispetto al Nord: 59° prova 2 orientamento rispetto ri	località:	SEANO		da	ata:	26/07/2012	ora: 17:55:31
nome stazione: prova 2 orientamento strumento rispetto al Nord: 59° tipo stazione: SARA SR04HS tipo sensori: velocimetri 4,5 Hz nome file: MT_20120726_175531.SAF gain:	operatore:	Peruzzi -	Mantova	ni			
tipo stazione: SARA SR04HS tipo sensori: velocimetri 4,5 Hz nome file: MT_20120726_175531_SAF gain:	latitudine:	43,83262	N N	lo	ngitudine:	11,02968E	quota s.l.m.: 37,5
nome file: MT_20120726_175531.SAF gain: freq.campion.[Hz]: 300 durata rec. [mm:ss]: 30.00 vento assente debote (5m/s) medio forte Misurato vento plogGIA messente debote medio forte misurato temperatura ("C approx) Note: natura terreno asfalto cemento calcestruzzo pavimentato altro ascoppiamento artificiale al suolo: no si, tipologia capannori industriali transienti:	nome stazione:	prova 2		OI	rientamento strur	mento rispetto al Nord:	59°
gain: freq.campion.[Hz]: 300 durata rec. [mm:ss]: 30.00	tipo stazione:	SARA SR	R04HS	tip	po sensori:	velocimetri 4,5 Hz	
VENTO assente debole (5m/s) x medio forte Misurato ploGGIA x assente debole (5m/s) x medio forte Misurato temperatura (°C approx) Note: Note: X S S S S S S S S	nome file:	MT_2012	0726_17	5531.S	AF		
condizioni meteo PIOGGIA X assente debote medio forte Misurato temperatura ("C approx) Note: Sterra	gain:			fre	eq.campion.[Hz]:	300	durata rec. [mm:ss]: 30.00
temperatura ("C approx) Note: natura terreno			_	_			
natura terreno appoggio asfalto cemenb calcestruzzo pavimentato altro Succeptiamento artificiale al suolo: X no Si, tipologia	meteo						MISURATO
natura terreno appoggio safalto cemenb calcestruzzo pavimentab altro						Note:	
X suclo asciutic suclo umido Note:	natura terreno		X dura		ghiaia sabb	oia roccia	X erba alta
accoppiamento artificiale al suolo: X no si, tipologia densità edifici: nessuno X dispersi addensati altro, tipologia capanonri industriali transienti: O	appoggio	asfalt	o cer	mento	calcestruzzo	pavimentato altro_	
densità edifici: nessuro dispersi addensati altro, tipologia capannori industriati transienti:		X suolo	asciutto	suc	olo umido	Note:	
densità edifici: nessuro dispersi addensati altro, tipologia capannori industriati transienti:	accoppiament	o artificial	e al suo	 lo: [2	ano ⊏	si tinologia	
transienti: O				_=		,	
automobili X X 5 5 camion X 5 5 altro X 5 5 altro X 5 5 camion X 5 5 camion X 5 5 camion X 6 camion X 6 camion X 6 camion X 7 camio	densita edifici:	nessi	uno X di	ispersi	addensati	altro, tipologia _ capann	oni industriali
automobili X 5 5 strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza) strutture nelle vicinanze: aberi, sordaggi, edita, port. descrizione, altezza, distanza d	transienti:	suno	erati	o densi		(fabbriche,cantieri	avori, pompe, corsi d'acqua, ecc.)
camion X 5 pedoni X 5 altro (descrizione, altezza, distanza)		bod	DOE TO	E d	listanza [m]		*
camion X 5 pedoni X 5 altro			Х			strutture nelle vio	cinanze: alberi, sondaggi, editici, ponti,
note: - si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente; interferisca significativamente;						(descrizione, artezza,	distanza)
note: - si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente!							
- si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente!		+++		\vdash		41	
individuare; sembra che non interferisca significativamente;					5		
			_		5		
					5		- si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente;
							- si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente;
					5		- si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente;
					3		- si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente;

Figura 1 – schede di output dell'elaborazione misure HVSR

				SE	ANO - pro	va 2
CRITERI PR	ROGETTO SESAME					
	Criteri per una cu			e [R]		
	[devono esse	ere soddis				
i R	f ₀ > 10 / L _w		2.47	>	0.50	ok
ii R	$n_c(f_0) > 200$		3554	>	200	ok
iii R	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	> 0.5Hz	eccede	SU	251	ok
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0		punti	O.K
	Criteri per un p [è stato escluso il criterio vC: alr				lisfatti]	
i C	esiste f in [f ₀ /4, f ₀] A _{H/V} (f) <	A ₀ / 2	1.661	Hz		ok
ii C	esiste f * in [f ₀ , 4f ₀] A _{H/V} (f *) <	A ₀ / 2	3.542	Hz		ok
iii C	A ₀ > 2		5.09	>	2	ok
iv C	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5$	5%	0.026	<	0.05	ok
v C	$\sigma_i < \varepsilon(f_0)$		0.29344	<	0.12342	no
vi C	$\sigma_A(f_0) < \theta(f_0)$		1.388	<	1.58	ok
Lw	larghezza della finestra [s]					20
n _w	numero di finiestre utilizzate per l'a	nalisi [nur	n]	***************************************		72
	numero di clicli significativi [num]					3554
f ₀	frequenza di picco H/V [Hz]					2.47
f	frequenza	••••••	•••••			4
Oi	deviazione standard della frequenza	a di picco	di H/V [Hz]			± 0.29
ε(f ₀)	valore soglia per condizioni di stabi	ilità σ; < ε	(f ₀) - vedi ta	bella sotto		0.12
A ₀	ampiezza del picco H/V alla freque		··			5.09
A _{H/V} (f)	ampiezza della curva H/V alla frequ	jenza f				
f -	frequenza fra f ₀ /4 e f ₀ per la quale A	$\lambda_{H/V}(f^{-}) < \lambda_{H/V}(f^{-})$	A ₀ /2			
f +	frequenza fra f ₀ e 4f ₀ per la quale A	_{H/V} (f ⁺) < A	λ ₀ /2			
$O_A(f_0)$	deviazione standard di A ₀					± 1.38
o _A (f)	deviazione standard di A _{H/V} (f)					
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)		***************************************		
$\Theta(f_0)$	valore soglia per la condizione di st	tabilità σ _A (f) < $\theta(f_0)$ - v	edi tabella s	sotto	1.58
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2
	Guidelines for the implementation of the F					
	s, processing and interpretations. SESAMI CRITERI Del.GRT n.261/2011	_ curopean	гознагоп рго	yect, deliveral	JIG DZ3. IZ, Z	LUUJ.J
	allo et alii "Il contributo della sismica pass	iva nella mi	crozonazione	e di due macr	oaree abruz	zesi" -
1. Staziona	rietà temporale	ok		CLASSE		Α
2. Isotropia		ok		SOTTOCL	ASSE	Tipo 1
3. Assenza	disturbi elettromagnetici	ok				
	ità fisica	ok		Valutazio		
4. Plausibil					ntracto:	30-50 m
4. Plausibil	zza statistica (*)	ok		profon. co	mu asio.	30-30 111
4. Plausibil	zza statistica ^(*)	ok ok		contrasto:	[decin	e di metri]

5.4 Monografie misure HVSR

Nei paragrafi seguenti si discutono sinteticamente gli aspetti significativi, le considerazioni e le valutazioni che emergono dall'esame delle misure effettuate per le quattro aree comunali interessate dall'indagine di MS.

La visione d'insieme per ciascuna area permette di inquadrare correttamente ciascuna singola misura nel contesto più ampio e quindi con il contributo di una interpretazione svolta su più punti e con più riferimenti connessi alle stratigrafie da indagini dirette disponibili (sebbene purtroppo non numerose).

Le considerazioni sono di carattere "stratigrafico", inquadrando le risposte delle prove con le conoscenze geologiche disponibili (individuazione di modeste coperture e zone di detensionamento superficiale per alterazione), ma divengono sostanziali, dal punto di vista "ingegneristico", là dove i picchi di risonanza rientrano nel range di frequenze di vibrazione di edifici e manufatti (0.5-10 Hz) per le implicazioni dirette che possono avere con fenomeni di risonanza delle strutture.

5.4.1 Bacchereto

L'areale di indagine comprende la frazione di Bacchereto (734 abitanti), posta nella porzione nordoccidentale del territorio comunale.

Totale misure effettuate: 5

<u>Geologia</u>: L'abitato di Bacchereto si sviluppa in una zona complessa di sovrascorrimento ove vengono a contatto formazioni Liguridi (Formazione M.Morello, Formazione di Sillanno, Complesso Caotico) con quelle della Falda Toscana (Macigno); morfologicamente si tratta di una sorta di ampia cengia sub-pianeggiante orientata NO-SE, posta a mezza costa di un versante con immersione, a tratti accentuata, in direzione NE; la direzione SO-NE è anche quella delle principali lineazioni e quindi degli impluvi; le coperture detritico-colluviali sono concentrate nelle zone di impluvio a minor pendenza e presentano spessori massimi (rilevati con prove dirette e indirette) intorno ai 3-4 metri.

Interpretazione delle misure:

<u>assunzioni generali</u>: la presenza di litotipi lapidei sub-affioranti e di spessori di coperture modesti ha indotto ad impostare le elaborazioni delle prove concentrando l'attenzione sugli eventuali picchi presenti alle alte frequenze per caratterizzare i depositi superficiali e gli orizzonti di alterazione.

- prova 1: misura affidabile (classe A1), massimo risonante evidente intorno a 17.5 Hz con contrasto di impedenza basso (A₀=2.34); in accordo con le evidenze di superficie e dei dati diretti disponibili, la modesta "copertura", dell'ordine dei 5-10 metri, può essere interpretata come orizzonte di alterazione della roccia in posto rappresentata dai calcari-marnosi della Formazione di M.Morello.
- prova 2: misura affidabile (classe C, ma senza picco su substrato in affioramento), l'elaborazione evidenzia un massimo relativo, fortemente direzionale, alle basse frequenze che non rappresenta comunque un picco significativo, ma appare riconducibile agli effetti 2D di versante; l'orizzonte di alterazione sul substrato litoide, rappresentato dal Complesso Caotico, appare di spessore irrilevante ai fini sismici.
- prove 3 e 4: analoghe alla prova 2, anche se in questo caso il substrato è costituito dal Macigno. Nella prova 4 si evidenzia un picco a frequenze molto alte (44.17 Hz) che si riferisce alla esigua copertura di alterazione, ma che assume una connotazione direzionale connessa presumibilmente alla morfologia di "cresta" del sito di misura.
- prova 5: misura di classe B2 (affidabile considerando il contesto), massimo risonante intorno a 14.6 Hz con contrasto di impedenza molto basso (A₀=1.83); in accordo con i dati disponibili, la copertura dell'ordine di 5-10 metri può essere ricondotta all'orizzonte di alterazione della formazione in

posto del Complesso Caotico; l'elaborazione evidenzia un secondo massimo relativo, fortemente direzionale, alle basse frequenze che non rappresenta comunque un picco, ma appare riconducibile agli effetti 2D di versante.

considerazioni conclusive: le misure effettuate confermano la presenza in tutto l'areale di "bedrock" sub-affiorante, con spessori di coltre di alterazione/colluvium che localmente possono raggiungere la potenza di qualche metro, come confermato anche dai dati delle indagini sismiche e geognostiche presenti nell'area; non risultano presenti effetti di amplificazione significativi dovuti agli orizzonti di alterazione, che presentano frequenze di risonanza al di fuori del "range" significativo per gli edifici ed i manufatti (nell'intervallo "ingegneristico" non sono di fatto presenti amplificazioni).

I picchi marcatamente direzionali e generalmente molto "frastagliati" presenti alle basse frequenze (che danno caratteristiche figure ad "occhio") appaiono riconducibili ad effetti 2D connessi alla morfologia particolarmente direzionale della zona (creste e valli) e presumibilmente alla presenza delle superfici di sovrascorrimento che mettono a contatto substrati lapidei a comportamento relativamente differente (una sorta di "morfologia" sepolta).

5.4.2 Carmignano

L'areale di indagine comprende le frazioni di Carmignano capoluogo (1.960 abitanti), La Serra (596 abitanti) e S.Cristina (467 abitanti). I tre abitati principali, collegati da una serie di località minori, si sviluppano lungo la viabilità principale su crinali interni al territorio comunale, disposti a formare una sorta di V rovesciata.

Totale misure effettuate: 8

<u>Geologia</u>: Come per l'abitato di Bacchereto, anche Carmigano si sviluppa in una zona complessa di sovrascorrimento ove vengono a contatto formazioni Liguridi (Formazione M.Morello, Complesso Caotico) con quelle della Falda Toscana (Macigno di Londa, Marne di S.Polo); le aree urbanizzate si sviluppano su due crinali ortogonali principali, impostati sulle litologie più tenaci (Macigno di Londa, Marne di S.Polo, Formazione di M.Morello), mentre le parti di fondovalle, non urbanizzate, insistono sul Complesso Caotico; le scarse indagini dirette presenti nell'area, confermano la presenza di coperture detritico-colluviali di spessori modesti (dell'ordine di 1-2 metri) e solo localmente si rinvengono spessori di alterazione della roccia in posto che possono raggiungere i 7-8 metri (come anche confermato da alcune delle prospezioni di simica attiva disponibili).

Interpretazione delle misure:

<u>assunzioni generali</u>: anche in questo caso, la presenza di litotipi lapidei sub-affioranti e di spessori di coperture modesti ha indotto ad impostare le elaborazioni delle prove concentrando l'attenzione sugli eventuali picchi presenti alle alte frequenze per caratterizzare i depositi superficiali.

- prova 1: misura affidabile considerando il contesto (classe B1), massimo risonante evidente intorno a 32-33 Hz con contrasto di impedenza basso (A₀=2.87); l'elaborazione ha confermato, in accordo con le evidenze di superficie e dei dati diretti disponibili, che la modesta "copertura" dell'ordine dei 5 metri può essere interpretata come orizzonte di alterazione della roccia in posto rappresentata dalle Marne di S.Polo.
- <u>prova 2</u>: misura affidabile considerando il contesto (classe B2), l'elaborazione evidenzia un modesto massimo relativo, ma sostanzialmente il diagramma è piatto, confermando la condizione di roccia in posto affiorante (Marne di S.Polo).
- <u>prove 3</u>: classe B2, analoga alla prova 1, però con picco relativo molto poco accentuato (A₀=1.48) alla frequenza di 13-14 Hz, riconducibile alla fascia di alterazione del Macigno di Londa che sembrerebbe raggiungere uno spessore relativamente maggiore che nelle altre prove.

- <u>prova 4</u>: misura di classe C (affidabile considerando il contesto), con massimo risonante alle alte frequenze (intorno a 50 Hz) molto direzionale proprio a causa della superficialità dell'interfaccia copertura/bedrock impostata alla quota di passaggio colluvium/Macigno di Londa.
- <u>prova 5</u>: misura di classe C (affidabile considerando il contesto), con picco risonante sostanzialmente assente (quello evidenziato dall'elaborazione appare correlabile ad effetti 2D ben evidenti su tutto il tracciato compreso fra 2 e 20 Hz); prova su bedrock affiorante costituito da Macigno di Londa.
- prova 6: misura affidabile di classe A1, con picco risonante alle frequenze di 7-8 Hz non particolarmente accentuato (A₀=2.21); presente un disturbo elettromagnetico intorno ai 20 Hz che sembrerebbe influenzare i rapporti H/V nella fascia limitrofa di frequenze (abbassamento); le evidenze di campagna confermano che la prova si sviluppa su bedrock affiorante (Formazione di M.Morello), il picco apparirebbe riconducibile al passaggio litologico fra termini siltitico-marnosi e i sottostanti più francamente calcarei (individuato anche nel vicino pozzo n°564) o ad una fascia di detensionamento dovuta a fratturazione dei materiali dell'ordine della decina di metri di spessore.
- prova 7: misura affidabile di classe A1, con picco risonante a 20 Hz ben evidente (A_0 =4.82); la parziale direzionalità del picco appare riconducibile alla estrema superficialità del contrasto (qualche metro) attribuibile al passaggio fra alterazione/colluvium e bedrock costituito dal Complesso Caotico; misura sostanzialmente piatta.
- prova 8: misura affidabile considerando il contesto (B2), con picco evidente intorno a 10 Hz (A₀=3.47) all'interfaccia fra porzione alterata e bedrock costituito dal Complesso Caotico; la sequenza di picchi minori alle frequenze inferiori a 10 Hz potrebbe essere riconducibile all'assetto complesso rilevabile nel Caotico (come appare anche in altre misure effettuate sulla medesima unità formazionale nelle varie zone di indagine del comune vedi Comeana e Seano).

<u>considerazioni conclusive</u>: le misure effettuate confermano la presenza in tutto l'areale di bedrock sub affiorante, con spessori di coltre di alterazione che localmente possono raggiungere valori di qualche metro, come confermato anche dai dati delle indagini sismiche e geognostiche presenti nell'area; non risultano presenti effetti di amplificazione significativi dovuti agli orizzonti di alterazione.

I picchi marcatamente direzionali e generalmente molto "frastagliati" presenti in quasi tutte le misure alle basse frequenze (che danno caratteristiche figure ad "occhio") appaiono riconducibili ad effetti 2D connessi alla morfologia particolarmente direzionale della zona (creste e valli) e presumibilmente alla presenze delle superfici di sovrascorrimento che mettono a contatto substrati lapidei a comportamento relativamente differente (una sorta di "morfologia" sepolta).

5.4.3 Comeana

L'area di indagine comprende tutta la porzione di pianura dell'abitato di Comeana, oltre alle località che si spingono sulla dorsale che borda la pianura a SO (Il Cortile, Cerveta, Le Farnete, Le Falene, Le Corti, Il Colombaione, Le Fonti, La Rivolta) per un totale di 2.531 abitanti.

Totale misure effettuate: 9

Geologia: L'abitato di Comeana si sviluppa prevalentemente nella fascia di raccordo fra le ultime propaggini sud-orientali della dorsale del Monte Albano e la pianura fiorentina. La geologia di superficie della zona è attribuita ai depositi fluvio-lacustri che terminano verso SO sui rilievi impostati sulla Formazione di M.Morello. La geometria ed i rapporti reciproci tra le formazioni presenti al di sotto dei depositi fluvio-lacustri appare legata alle complesse fasi tettoniche che, localmente, hanno portato al sovrascorrimento

(embriciato e spesso con ripetizioni delle serie) dei complessi Liguridi sulle formazioni della Falda Toscana. Le sezioni geologiche disegnate trasversalmente alle strutture geologiche principali descrivono, pur con dubbi interpretativi sulla precisa localizzazione e sulle pendenze delle superfici di sovrascorrimento e dei contatti tettonici, l'andamento del substrato dei depositi lacustri. La ricostruzione ha tenuto conto sia del "raccordo" con i rilievi geologici dei comuni contermini (Poggio a Caiano, Signa e Lastra a Signa) sia dei purtroppo rarissimi dati di indagini dirette, sia della interpretazione delle prove HVSR. Si assiste pertanto, da SO verso NE, al susseguirsi di "fasce" con andamento appenninico costituite da Formazione di M.Morello, Complesso Caotico e Macigno di Londa. Lo spessore ricostruito dei depositi fluvio-lacustri, la cui base costituisce in genere l'interfaccia con il substrato sismico (meno evidente quando insistono sul Complesso Caotico), varia da qualche metro a circa 20 metri procedendo da SO verso NE. I dati diretti che evidenziano il raggiungimento del substrato sono solo 4 e tutti localizzati nel margine SO della zona ricompresa nello studio. Nelle porzioni impostate su substrato lapideo affiorante (dorsale sudorientale) gli spessori delle coperture detritico-colluviali raggiungono spessori modesti (dell'ordine di 1-2 metri).

La delicatezza della definizione delle zone di substrato caratterizzate dal Complesso Caotico (cioè da prevalenti litologie siltitico-argillitiche fortemente tettonizzate) risiede nel fatto che esso difficilmente raggiunge valori di Vs che lo facciano intendere come substrato sismico, creando quindi delle zone all'interno dell'area di pianura che risponderanno in modo presumibilmente differente al sisma rispetto a zone con substrato più rigido e Vs più elevata (Formazione di M.Morello e Macigno di Londa).

Interpretazione delle misure:

<u>assunzioni generali</u>: le scarse informazioni dirette sul sottosuolo e la complessa geologia locale (spesso ricostruita con interpretazioni non particolarmente concordi nei diversi fogli del CARG consultati) hanno indotto a cercare di trovare risposte nella attenta interpretazione delle misure HVSR, valutate anche sulla base di considerazioni sviluppate per la zona di Seano (vedi paragrafo successivo) dove più chiari appaiono i confini fra formazioni in posto con Vs sismicamente bassa (Complesso Caotico) e con Vs elevata (Formazione di M.Morello, Macigno di Londa). In particolare diviene rilevante, mantenendo il più possibile criteri standard di acquisizione e analisi delle misure per avere risultati confrontabili, utilizzare i valori di ampiezza di picco per poter discriminare fra substrati differenti al di sotto dei sedimenti di copertura della porzione di pianura.

Occorre infine aggiungere che la forte e diffusa concentrazione industriale, soprattutto di aziende di filature e tessiture con cicli lavorativi continui h24 che producono significativi disturbi di frequenza ai valori di interesse ingegneristico, ha reso particolarmente difficoltosa l'acquisizione di misure sufficientemente chiare per un'analisi pienamente soddisfacente.

prove 1 e 9: misure affidabili di classe A1, delle quali la seconda (9) è stata realizzata fuori dall'area di indagine proprio per allontanarsi dal disturbo elettromeccanico dei telai industriali per avere conferma di quanto osservato nella prova 1. Il massimo risonante è ben evidente intorno a 3-5 Hz (testimoniando un graduale approfondimento passando dalla 1 alla 9, in concordanza con il modello di sottosuolo ipotizzato), con contrasto di impedenza ben marcato (A₀>5); l'elaborazione conferma le ipotesi di ricostruzione del sottosuolo, dove l'interfaccia fra litotipi a risposta sismica francamente differente (alto contrasto) risulta a profondità comprese tra 20-30 metri con approfondimento verso il centro della pianura. Gli alti valori del rapporto H/V indicano la presenza di un substrato che, in accordo con le interpretazioni geologiche di superficie, fanno propendere per la Formazione del Macigno di Londa (ancorchè non esistano riscontri diretti).

prove 2 e 10: misure molto differenti benchè sviluppate nello spazio di circa 100 metri. La 2, di classe C, non presenta un picco netto e mostra ampie evidenze direzionali riconducibili ad effetti 2D presumibilmente riconducibili anche a morfologie sepolte (particolare l'estrema somiglianza della

misura con la prova 3, impostata su Formazione di M.Morello affiorante su crinale di dorsale); la 10, effettuata successivamente come verifica alla 2, risulta una misura affidabile di classe A1 e presenta un picco "largo" evidente intorno a 7 Hz (un picco circoscritto e poco intenso appare intorno a 15 Hz, ma è riconducibile a un disturbo elettromagnetico – come confermato anche dalla spiccata direzionalità) e un andamento complessivo della registrazione che sembrerebbe indicare il comportamento rilevato nelle aree di conclamata presenza di Complesso Caotico. La complessa storia tettonica della zona potrebbe forse spiegare la coesistenza delle due misure nel ristretto spazio di un centinaio di metri. Mancando però qualunque riscontro diretto di sottosuolo, l'interpretazione geologica effettuata correlando i rilievi geologici dei comuni di Poggio a Caiano, Carmignano, Lastra a Signa e Signa (per cercare di trovare riferimenti anche nelle aree contermini a Comeana) indurrebbe ad interpretare come più plausibile la misura 10 che indicherebbe la presenza di Complesso Caotico al di sotto di un modesto spessore (dell'ordine della decina di metri) di depositi fluvio-lacustri.

- prove 3 e 4: misure sostanzialmente "piatte" (anche se la 4 presenta un picco molto superficiale 42 Hz da ricondurre alla coltre di alterazione/colluvium di qualche metro di spessore); entrambe appaiono affidabili se considerate nel contesto; confermano la presenza della roccia subaffiorante della Formazione di M.Morello e la presenza locale di modestissime coltri di alterazione/colluvium.
- prova 5: misura affidabile considerando il contesto (B2), con picco evidente intorno a 8 Hz (A₀=2.6) all'interfaccia fra deposito fluvio-lacustre e bedrock costituito dal Complesso Caotico (ad una profondità di poco superiore alla decina di metri, come risulterebbe anche dalle sezioni interpretative); la sequenza di picchi minori alle frequenze inferiori potrebbe essere riconducibile all'assetto complesso rilevabile nel Caotico (come appare anche in altre misure fatte in zona sulla medesima unità formazionale).
- <u>prova 6</u>: misura affidabile nel contesto (B2), molto simile alla precedente anche se il picco appare meno accentuato; la frequenza del picco a circa 7 Hz è plausibile con la profondità attesa dell'interfaccia depositi fluvio-lacustri Complesso Caotico; l'ampiezza del rapporto H/V di picco (A₀=3.07) conferma la presenza dell'interfaccia ad una profondità dell'ordine della decina di metri, plausibile con il contesto interpretativo locale.
- prova 7: ancora una misura affidabile nel contesto (B2), con la caratteristica forma dello spettro delle aree con bedrock costituito dal Complesso Caotico (sequenza di piccoli picchi alle medie frequenze); presenta un picco superficiale (48 Hz) di intensità A₀=3.36. Salvo il più modesto spessore della copertura, che qui è dell'ordine di qualche metro, la forma appare molto simile a tutte le altre prove (5, 6 e 10) effettuate sul medesimo contesto.
- prova 8: la prova appare molto disturbata dalla presenza delle attività industriali; successivi tentativi per ottenere un risultato più soddisfacente non hanno permesso di ottenere registrazioni migliori (attività industriale h24). Viene comunque riportata perché, se analizzata nel contesto generale dell'area di indagine, assume un suo significato di conferma delle indicazioni provenienti dai rilievi geologici di superficie. La forma del grafico dello spettro H/V infatti conferma la forma a picchi modesti ricorrenti per frequenze inferiori a 10 Hz caratteristica del Complesso Caotico, mentre la porzione a frequenze superiori appare affetta da disturbi che rendono una interpretazione della misura francamente poco affidabile.

<u>considerazioni conclusive</u>: le misure effettuate confermano la presenza nella porzione sudorientale dell'area indagata (che insiste sulla Formazione di M.Morello) di bedrock sub affiorante, con spessori di coltre di alterazione che localmente possono raggiungere lo spessore di qualche metro, come confermato

anche dai dati delle indagini sismiche e geognostiche presenti nell'area; non risultano presenti effetti di amplificazione significativi dovuti agli orizzonti di alterazione.

I picchi marcatamente direzionali alle basse frequenze appaiono riconducibili ad effetti 2D connessi alla morfologia particolarmente direzionale della zona (dorsale).

Per quanto riguarda invece l'ampia porzione a pendenza minore e più densamente urbanizzata, dove affiorano i depositi fluvio-lacustri, poiché il substrato appare prevalentemente rappresentato da Complesso Caotico – Formazione di Sillano, non appaiono evidenti significativi picchi a testimoniare amplificazioni nel range delle frequenze ingegneristiche; solo nell'estrema porzione nord-orientale dell'areale di indagine, in corrispondenza di un bedrock più rigido (presumibilmente rappresentato dalla Formazione del Macigno di Londa), si assiste a fenomeni di amplificazione nelle coperture che possono assumere una valenza significativa anche in considerazione delle tipologie costruttive degli edifici industriali presenti e delle loro altezze.

Rimane comunque poco caratterizzata tutta la fascia di presunto affioramento dei depositi fluvio-lacustri sul Caotico: infatti nonostante le scarse indagini presenti e la non particolarmente chiara interpretazione del segnale in molte delle misure HVSR, sembrerebbe possibile indicare che il substrato Caotico-Sillano possa localmente essere sub-affiorante a testimoniare una morfologia articolata in promontori all'epoca della deposizione lacustre, che quindi si sarebbe realizzata non in modo uniforme su tutta l'area.

I picchi marcatamente direzionali e generalmente molto "frastagliati" presenti in quasi tutte le misure alle basse frequenze (che danno caratteristiche figure ad "occhio") appaiono riconducibili ad effetti 2D connessi alla morfologia particolarmente direzionale della zona (creste e valli) e presumibilmente alla presenze delle superfici di sovrascorrimento che mettono a contatto substrati lapidei a comportamento relativamente differente (una sorta di "morfologia" sepolta).

L'area di indagine, ancorché non siano generalmente presenti picchi significativi nel range di frequenze ingegneristiche nelle prove HVSR effettuate, mostra una variabilità di "risposta sismica" delle coperture molto accentuata anche nel raggio di poche decine di metri (passando anche bruscamente da condizioni senza un picco evidente ad altre con picchi in campi di frequenze di interesse dell'edilizia, anche se a contrasto di impedenza non particolarmente elevato), testimoniando un assetto di sottosuolo complesso. Appare possibile già in questa sede affermare che la variabilità che si realizza in distanze molto brevi e la scarsità di informazioni dirette che aiutino nella interpretazione generale dell'area devono presumere per tutta l'ampia area di affioramento dei depositi fluvio-lacustri un livello di approfondimento sulla risposta simica locale nelle fasi di indagini legate alla progettazione di nuove strutture edilizie.

5.4.4 Seano

L'areale di indagine comprende tutta la pianura sulla quale si sviluppa l'abitato di Seano e le frazioni presenti a S-SO sui rilievi collinari che bordano la pianura. Complessivamente nell'area risiedono 5.111 abitanti, risultando il nucleo più grande del comune.

Totale misure effettuate: 14

<u>Geologia</u>: L'abitato principale si sviluppa sulla pianura costituita da alluvioni recenti depositatesi in sequenza con lembi residuali dei depositi fluvio-lacustri dell'ampio bacino Firenze-Prato-Pistoia. Al di sotto dei depositi, che presentano spessori mai superiori a qualche decina di metri (approfondendosi da SO verso NE), si trovano, da SO verso NE, tre fasce distinte con orientamento appenninico: una prima fascia appartenente alla Formazione del Macigno di Londa, alla quale succede una fascia impostata sul Complesso Caotico (sulla quale si sviluppa l'abitato principale di Seano) seguita infine da una fascia nuovamente impostata sul Macigno di Londa (loc.Campiglioli, Bussolaio e zona industriale). La presenza delle tre fasce è

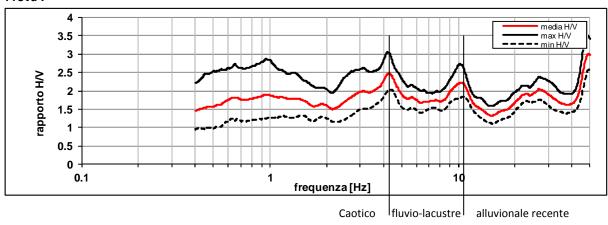
stata ricostruita sia basandosi sulla continuità del contesto geologico presente nel limitrofo comune di Poggio a Caiano, sia sulla base delle prove HVSR di seguito descritte.

Interpretazione delle misure:

<u>assunzioni generali</u>: l'area di indagine ha interessato, nella porzione SO zone con presenza di litotipi lapidei sub-affioranti e di spessori di coperture modesti dove le elaborazioni delle prove sono state impostate concentrando l'attenzione sugli eventuali picchi presenti alle alte frequenze per caratterizzare i depositi superficiali; nella più ampia zona di pianura, ove maggiore risulta l'urbanizzazione, le elaborazioni sono state sviluppate prevalentemente allo scopo di individuare gli spessori delle coperture (disponendo di poche indagini dirette che raggiungono il substrato) e l'ampiezza del contrasto di impedenza fra substrato e coperture, al fine di fornire una valutazione qualitativa dell'amplificazione attesa alle frequenze del range di interesse ingegneristico.

Anche in questo caso per avere risultati confrontabili con le altre zone studiate del comune, sono stati mantenuti il più possibile criteri standard di acquisizione e analisi delle misure, utilizzando i valori di ampiezza di picco per poter discriminare fra substrati differenti al di sotto dei sedimenti di copertura della porzione di pianura.

Come per Comeana, la forte e diffusa concentrazione industriale, soprattutto di aziende (filature e tessiture) che producono significativi disturbi di frequenza ai valori di interesse ingegneristico e che hanno cicli continui h24, ha reso particolarmente difficoltosa l'acquisizione di misure sufficientemente chiare per un'analisi pienamente soddisfacente soprattutto nella fascia di pianura impostata sul Complesso Caotico dove il contrasto di impedenza è meno spiccato. Proprio a seguito di tale difficoltà le misure in alcune localizzazioni sono state ripetute più volte in ore e giorni differenti (prova bis, ter) per poi assumere quella il cui risultato appariva relativamente più chiaro per l'interpretazione.


- prove 1, 2, 5 e 6: misure affidabili (classe A1), massimo risonante molto evidente intorno a 2-2.5 Hz con contrasto di impedenza elevato (A₀=3.9-6.9); buona rispondenza con le profondità attese della interfaccia coperture-substrato che anche da indagini dirette risulterebbe intorno a 30 m dal p.c.; le prove appaiono confermare e ben rappresentare la presenza nell'area di una copertura sostanzialmente omogenea (non sono presenti picchi secondari) che poggia su una formazione rigida quale quella del Macigno di Londa (la cui presenza si ricostruisce dalla geologia del comune di Poggio a Caiano). Le condizioni di prova appaiono quelle ideali di giacitura sub orizzontale ed alto contrasto di impedenza.
- prova 4: misura affidabile considerando il contesto (classe B2), strettamente correlata alle precedenti dal punto di vista della interpretazione di sottosuolo, con picco a 3,7 Hz e A₀=4.3; l'interpretazione appare analoga alle misure precedenti, ma si evidenzia la presenza di un picco secondario alle basse frequenze, molto direzionale (figura ad "occhio" nel grafico isotropia dei rapporti spettrali) riconducibile a un probabile effetto 2D connesso alla vicina discontinuità tettonica che mette in contatto il Macigno di Londa con il Complesso Caotico (confermando l'effetto tipo "morfologia" sepolta visto anche nelle aree di indagine esaminate nei precedenti paragrafi, anche se impostate su contesti differenti sui rilievi in assenza di coperture).
- prove 3 e 3bis: misure affidabili considerando il contesto (classe B2), entrambe con picco intorno a 3-4 Hz (a testimoniare un approfondimento del substrato passando dalla 3 alla 3bis; contrasto abbastanza accentuato (A₀=3.4 in entrambe) ma inferiore alle prove precedenti; le prove appaiono affette da rumori presumibilmente connessi al traffico, che nell'elaborazioni si è cercato di filtrare; particolare è lo sviluppo della "coda" alle frequenze inferiori al picco: la presenza di una sequenza di ondulazioni nello spettro di frequenza anche se con variazioni di ampiezza modeste appare molto caratteristico e sembrerebbe riconducibile alla presenza del Complesso Caotico come

bedrock (è una forma del grafico che in zona si ritrova quasi sempre in corrispondenza del Caotico-Sillano, come già osservato per Comeana e in parte per Carmignano).

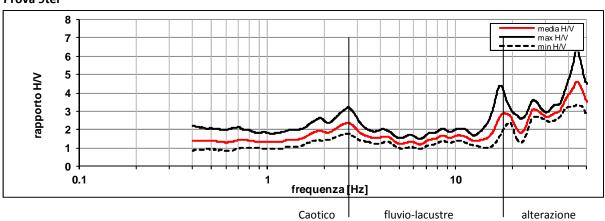

<u>prove 7 e 9ter</u>: misure che presentano un doppio picco, riconducibile alla presenza di una distinzione localmente più netta all'interno delle coperture, come interpretato nella successiva *Figura 2*.

Figura 2 – prove con doppio picco.

Prova 7

Prova 9ter

In entrambi i casi il picco significativo dal punto di vista ingegneristico è quello alle frequenze più basse, relativo al passaggio copertuta-Caotico che fornisce in entrambi casi una classe di misura affidabile considerando il contesto (classe B2); la frequenza dei picchi più profondi, fra 3 e 4 Hz, appare compatibile con la ricostruzione stratigrafica dell'area; l'ampiezza $A_0=2.4-2.5$ risulta indicare un contrasto di impedenza non particolarmente elevato, confermando ancora la presenza del Complesso Caotico come substrato.

prove 8bis: misura molto disturbata ma che è stato possibile interpretare avendo verificato nel contesto generale che la frequenza molto ben delineata del disturbo dei telai non impediva comunque una interpretazione del picco stratigrafico (in linea con quanto osservato nelle altre misure effettuate nell'area); tagliando l'interpretazione dell'acquisizione al di sopra dei 7 Hz la misura risulterebbe affidabile considerando il contesto (classe B2); l'ampiezza del picco (A₀=2.27) conferma la presenza del Complesso Caotico come substrato; anche la "coda" del grafico alle frequenze inferiori al picco appare confermare la forma che tipicamente è stata rilevata in zona per il substrato Caotico.

- prova 10bis: misura affidabile (classe A1), massimo risonante molto evidente intorno a 5.5 Hz con contrasto di impedenza elevato (A₀=5.98); buona rispondenza con le profondità attese della interfaccia coperture-substrato; la prove confermerebbe la presenza nell'area di una copertura sostanzialmente omogenea (non sono presenti picchi secondari) che poggia su una formazione rigida quale quella del Macigno di Londa (la cui presenza si ricostruisce dalla geologia dei rilievi limitrofi). Le condizioni di prova appaiono quelle ideali di giacitura sub orizzontale ed alto contrasto di impedenza.
- prova 11: misura affidabile considerando il contesto (classe B2), con picco intorno a 23-25 Hz non particolarmente isolato e chiaro e con ampiezza A₀=2.0, riconducibile al passaggio da orizzonte alterato a roccia in posto; si nota la presenza di disturbi elettromagnetici presumibilmente connessi ai telai (intorno a 7 Hz) presenti nell'area; si riesce comunque ad individuare la forma tipica del grafico relativo a prove effettuate sul Complesso Caotico, confermato dalle evidenze geologiche superficiali dei zona.
- prova 12: come la precedente è stata effettuata su substrato affiorante; tale evenienza è confermata dalla classe C della misura che può essere comunque considerata affidabile considerando il contesto; si nota il disturbo dei telai alla frequenza di 7 HZ, che comunque non inficia l'interpretazione della misura opportunamente contestualizzata dal punto di vista geologico. Alle frequenze basse nel grafico della isotropia dei rapporti spettrali appare una blanda figura ad "occhio" da ricondurre agli effetti 2D, già osservati per altre misure, connessi alla vicina discontinuità che mette in contatto il Caotico con le formazioni più rigide del Macigno di Cervarola e delle Marne di S.Polo. Appare quindi confermata la presenza di un substrato affiorante.
- prova 13: misura affidabile considerando il contesto (classe B2), con picco intorno a 32-33 Hz e con ampiezza A₀=2.14, riconducibile al passaggio da orizzonte alterato a roccia in posto; la misura conferma la presenza di roccia sub affiorante, in particolare del Macigno di Londa (come da rilievo geologico); presenza di figure fortemente direzionali che indicano la presenza di effetti 2D riconducibili ad effetti morfologici relativi alla posizione sul terminale di un crinale piuttosto accentuato.
- <u>Prova 14</u>: misura affidabile (classe A) considerando il particolare contesto urbanizzato con disturbi legati al traffico ed alla attività industriale. Picco intorno agli 8,0 Hz e con ampiezza A₀=3,47 riconducubile al passaggio tra le coperture alluvionali ed il substrato geologici, costituito dalla litofacies marnosa della formazione del Macigno di Londa, posto entro dieci metri di profondità dal piano campagna.

considerazioni conclusive: per quanto riguarda i rilievi presenti nella porzione sud-occidentale dell'area indagata, le misure effettuate confermano la presenza bedrock sub affiorante, con spessori di coltre di alterazione che localmente possono raggiungere lo spessore di qualche metro, come confermato anche dagli scarsi dati delle indagini geognostiche presenti nell'area; non risultano presenti effetti di amplificazione significativi dovuti agli orizzonti di alterazione.

I picchi marcatamente direzionali alle basse frequenze appaiono riconducibili ad effetti 2D connessi sia alla morfologia particolarmente direzionale della zona (dorsale) sia alle significative discontinuità tettoniche che mettono a contatto rocce con caratteristiche elastiche sostanzialmente differenti (Complesso Caotico e Sillano da una parte e complessi flyshoidi stratificati rigidi – Macigno di Londa e Marne di S.Polo – dall'altro).

Nell'ampia zona di pianura, densamente urbanizzata, dove affiorano i depositi fluvio-lacustri e fluviali, si osservano con particolare evidenza i comportamenti nettamente differenti delle due tipologie di substrato presenti (ancora Complesso Caotico e Macigno di Londa): le misure presentano in ogni caso un picco con frequenza strettamente correlata alla profondità dell'interfaccia coperture substrato, ma viene messa in

evidenza dall'ampiezza del rapporto H/V la significativa differenza di contrasto di impedenza sismica. La forma pulita del grafico dello spettro H/V mostra una sostanziale omogeneità di comportamento della copertura che può essere considerata simicamente omogenea; unica eccezione si ha in corrispondenza del modesto rilievo che limita a NO l'abitato di Seano (zona del cimitero) dove le misure 7 e 9ter mostrano un picco secondario all'interno della copertura. Le misure HVSR effettuate sull'area di pianura hanno permesso di ricostruire con buona approssimazione l'andamento delle formazioni del substrato, completando il lavoro preliminare di ricostruzione basato sul rilievo geologico di superficie che forniva però informazioni piuttosto incomplete sulla geometrie di raccordo fra gli affioramenti presenti a NO (comune Quarrata) e a SO (comune Poggio a Caiano). In corrispondenza del bedrock più rigido (rappresentato dalla Formazione del Macigno di Londa), si assiste a fenomeni di amplificazione nelle coperture che possono assumere una valenza significativa anche in considerazione delle tipologie costruttive degli edifici presenti e delle loro altezze.

5.4.5 Alcune considerazioni generali sui dati HVSR nelle aree indagate

Sulla scorta delle misure effettuate e della loro combinazione con evidenze geologiche di superficie e di sottosuolo derivanti dalla interpretazione delle indagini dirette ed indirette presenti, si possono dedurre alcune considerazioni di carattere generale per le aree indagate che possono aiutare nella interpretazione dei dati geofisici il progettista che si troverà ad operare su specifici progetti "puntuali":

- le coperture sedimentarie recenti (fluvio-lacustri e alluvionali) non presentano significative variazioni di impedenza sismica che possano indurre fenomeni di amplificazione locale degne di modellazione a livello di dettaglio;
- 2. sono spesso presenti, comunque a basse frequenze che non appaiono interferire con il campo di interesse ingegneristico nelle normali opere edilizie, fenomeni di amplificazione 2D molto direzionali legati sia ad effetti morfologici di superficie (creste e valli) sia alla presenza su tutto il territorio di imponenti fenomeni di sovrascorrimento che hanno messo in contatto substrati a rigidità molto differente (flysh arenacei e carbonatici con flysh siltitico-argillitici tettonizzati); questi ultimi si rilevano anche nelle prove effettuate nelle aree interessate dai depositi di copertura (prova 4 Seano);
- 3. il Complesso Caotico e la Formazione di Sillano rispondono alle sollecitazioni da microtremori con spettri H/V che presentano alle medio basse frequenze andamenti caratteristici che ne consentono generalmente un facile riconoscimento (una sorta di "firma sismica") nelle zone di pianura con presenza di depositi di copertura (prove 8 Carmignano, 5-7-8-10 Comeana, 3-8-11 Seano); ciò si associa a valori di amplificazione A₀ inferiori a 3.5-4, che invece sui substrati più rigidi presentano valori decisamente superiori a 4.

6 La carta delle Microzone Omogenee in Prospettiva Sismica (MOPS), delle frequenze fondamentali e della pericolosità sismica locale Tavv.MS01/02/03/04)

Questo elaborato rappresenta la principale sintesi dello studio di microzonazione di livello 1 in quanto individua gli areali (microzone) dove, sulla base di osservazioni geologiche, geomorfologiche, dei dati geognostici e geofisici, è prevedibile l'occorrenza di diverse tipologie di effetti prodotti dall'azione sismica (amplificazioni, instabilità di versante, liquefazione, ecc.). Per una migliore lettura delle problematiche sismiche si è scelto di completare questa cartografia sia con le misure delle frequenze fondamentali che con la classificazione della pericolosità sismica locale. Infatti la valutazione della presenza di fenomeni di

amplificazione è stata di fatto inserita nella delimitazione delle zone MOPS, dove la distinzione delle "colonne stratigrafiche tipo" oltre alla litologia ha preso in considerazione anche i valori di frequenza.

Di fondamentale importanza diviene quindi l'individuazione dei litotipi che possono costituire il substrato rigido (ovvero delle litologie caratterizzate da valori delle velocità di propagazione delle onde di taglio S – convenzionalmente superiori a 800 m/sec - significativamente maggiori di quelli relativi alle coperture localmente presenti), accompagnata dalle informazioni che abbiamo visto nel capitolo precedente sulla frequenze fondamentali dei depositi (stima approssimativa della profondità del contrasto di impedenza sismica e della intensità attesa).

Chiaramente assume particolarmente rilievo l'individuazione di eventuali discontinuità e morfologie sepolte potenzialmente in grado di causare inversioni della velocità di propagazione delle onde di taglio ed effetti di risposta sismica locale bi e tri-dimensionali.

Le modalità di redazione della carta sono quelle indicate al capitolo 2.3 degli ICMS 2008, integrate con le specifiche di legenda contenute nei successivi documenti relativi agli standard di rappresentazione ed archiviazione informatica predisposti dalla "Commissione Nazionale per la Microzonazione Sismica" (Dipartimento Protezione Civile).

La carta è realizzata per ottenere un adeguato dettaglio, utile per il raggiungimento dei seguenti obiettivi:

- caratterizzazione del substrato geologico,
- caratterizzazione dei terreni di copertura,
- ricostruzione delle aree potenzialmente interessate da deformazioni permanenti in caso di evento sismico,
- definizione di forme geomorfologiche di superficie e sepolte, particolarmente importanti per problematiche sismiche.

La sintesi delle informazioni e la perimetrazione delle zone all'interno della "carta delle microzone omogenee in prospettiva sismica", permette di:

- 1. valutare le condizioni di pericolosità sismica ai sensi del DPGR n.53R/2011;
- 2. identificare le aree per le quali sono necessari ulteriori studi e indagini ed i relativi livelli di approfondimento;
- 3. definire gli interventi ammissibili in una data area e le eventuali modalità di intervento nelle aree urbanizzate (condizioni o criteri costruttivi connessi al valore delle frequenze fondamentali delle coperture).

Poiché gli ICMS definiscono fra le zone suscettibili di instabilità quelle interessate da potenziali fenomeni di liquefazione definite come "aree con terreni sabbiosi, sabbioso-limosi o sabbioso-ghiaiosi e con superficie della falda freatica e delle eventuali falde in pressione < 15 metri dal piano campagna", tutte le aree di pianura del comune, sviluppate sui depositi fluvio-lacustri e alluvionali recenti, rientrerebbero in questa classe. Per evitare che la rappresentazione cartografica di tale fenomeno di fatto "nasconda" altri aspetti interessanti connessi alle zone stabili suscettibili di amplificazioni locali (come vedremo per Seano e Comeana, legati alla presenza di due tipologie di substrato marcatamente differenti) si è deciso, in accordo con i tecnici della Regione, di non usare una retinatura per mappare in carta le aree con potenziali fenomeni di liquefazione, ma di evidenziarle semplicemente con un contorno poligonale.

6.1 La legenda delle carte MOPS

La definizione della legenda delle carte MOPS deriva dalle indicazioni contenute negli ICMS 2008 e nei documenti successivi relativi agli standard predisposti dal Dipartimento della Protezione Civile.

Rispetto alle ultime indicazioni ad oggi disponibili (*Standard di rappresentazione e archiviazione informatica* versione 2.0 del giugno 2012) si è preferito mantenere nella legenda in carta la rappresentazione con le colonne stratigrafiche, poiché ci sembra risultare più intuitiva e capace di rendere maggiormente leggibile

l'elaborato anche da parte delle professionalità che dovranno utilizzarne i risultati a fini pianificatori o di progettazione di dettaglio.

Inoltre, per ciascuna zona è stata attribuita anche la notazione di pericolosità sismica ai sensi dell'Allegato A del DPGR n.53/R in modo che lo stesso elaborato costituisca anche la "carta della pericolosità sismica", non più previsto dal Regolamento, ma necessario per l'applicazione delle norme tecniche di attuazione relative alla fattibilità degli interventi.

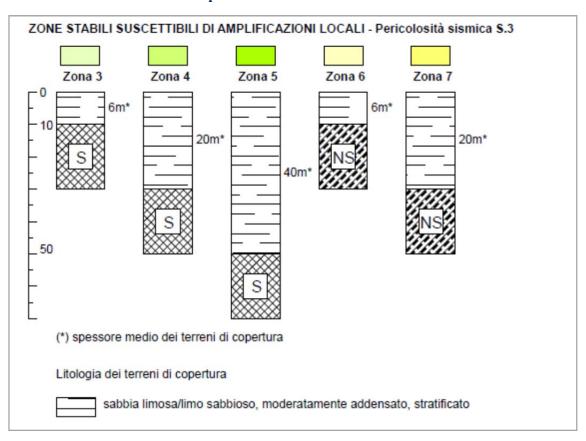
Come più volte richiamato nei capitoli precedenti, le carte MOPS accorpano in tre tipologie di zone le modalità di risposta alla sollecitazione sismica che ci si può attendere dalle caratteristiche del substrato:

- le zone stabili, nelle quali non si ipotizzano effetti locali di alcuna natura (litotipi assimilabili al substrato sismico in affioramento con morfologia pianeggiante o poco inclinata) e pertanto gli scuotimenti attesi sono equivalenti a quelli calcolati dagli studi di pericolosità di base che forniscono i valori di accelerazione indicati per la categoria A di sottosulo negli allegati alle NTC 2008 d.m. 14.01.2008;
- le zone stabili suscettibili di amplificazione sismica, dove il moto sismico viene modificato a causa delle caratteristiche litostratigrafiche (presenza di coperture sedimentarie) e/o morfometriche del territorio (pendenza dei versanti, creste, valli strette, ecc.), anche sepolte. In questo caso, si dovrà indagare, alla scala del progetto di dettaglio, l'effetto di amplificazione connesso alla risposta sismica locale utilizzando gli abachi delle NTC 2008 categorie di sottosuolo o provvedendo attraverso specifiche indagini ed analisi dove gli abachi semplificati non sono applicabili;
- le zone suscettibili di instabilità, cioè passibili di attivazione/riattivazione di fenomeni di deformazione permanente del terreno indotti o innescati dal sisma (instabilità di versante, liquefazioni, fagliazioni superficiali, cedimenti differenziali, ecc.) da indagare con specifiche indagini geotecniche e geofisiche in relazione allo stato di attività in accordo alle prescrizioni dettate per le aree a diversa pericolosità geologica.

La definizione della legenda segue quindi l'articolazione delle suddette zone.

6.1.1 Zone stabili

Ricomprendono le zone dove affiorano le formazioni rocciose in posto, con spessori di eventuali coltri di alterazione o depositi colluviali inferiori a 3 metri (spessore che non comporta fenomeni di amplificazione dell'onda sismica rilevanti per le strutture edilizie ed i manufatti in genere).


Nelle quattro aree indagate la legenda si presenta sostanzialmente identica, accorpando (come già visto per la carta geologico-tecnica in prospettiva sismica) i litotipi a risposta francamente rigida con Vs maggiore di 800 m/sec e quelli con una Vs che in superficie non raggiunge il valore standard di 800 m/sec (che viene comunque raggiunta progressivamente in profondità ma in modo graduale senza bruschi salti di impedenza sismica – quindi senza generare fenomeni di amplificazione locale). I primi sono definiti come *substrato*

lapideo stratificato e ricomprendono tutti i flysh arenacei o carbonatici della Falda Toscana e dei Complessi Liguri presenti; i secondi, denominati substrato coesivo non stratificato, comprendono le formazioni flyshoidi a componente siltitico-argillitica largamente prevalente e interessati da significativi fenomeni di tettonizzazione più o meno spinti (Complesso Caotico o di Base, ma anche Formazione di Sillano).

Sono poi riportate, con apposita simbologia, le indagini puntuali che intercettano il substrato; l'informazione completa la lettura della carta sia nelle aree stabili sia in quelle stabili suscettibili di amplificazione (paragrafo successivo) fornendo a colpo d'occhio gli elementi che hanno permesso la verifica dell'interpretazione stratigrafica altrimenti dedotta dalle sole evidenze di superficie.

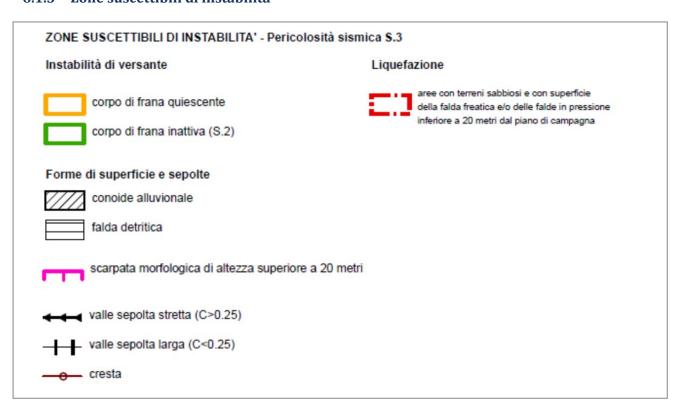
Ai sensi del DPGR 53/R/2011 la relativa categoria di pericolsoità è la S.2 tenendo in considerazione che si tratta di zone stabili, ma che presentano generalmente pendenze anche significative in un contesto dove le amplificazioni dovute ad effetti 2D sia topografici che di discontinuità nel substrato possono creare effetti di amplificazione al momento attuale valutabile solo qualitativamente (come visto al paragrafo 5.4.5).

6.1.2 Zone stabili suscettibili di amplificazioni locali

Raccolgono le zone dove si hanno terreni di copertura di spessore maggiore di 3 metri e con valori di Vs significativamente inferiori a quelli del substrato geologico; in tale condizione infatti si assiste a fenomeni di amplificazione dello scuotimento sismico in superficie collegati alla presenza di una interfaccia fra materiali con una significativa differenza di impedenza sismica.

Poiché gli effetti di amplificazione sulle costruzioni esistenti (tipologie e altezze degli edifici) sono legati allo spessore delle coperture, sono state individuate tre classi, anche secondo le indicazioni contenute nel vademecum delle "Specifiche tecniche regionali per l'elaborazione di indagini e studi di microzonazione sismica", da mettere in relazione alle possibili frequenze di risonanza dei terreni:

- assenza di fenomeni di risonanza significativi, ovvero nessun massimo relativo significativo della frequenza di picco (f₀) nell'intervallo 0,1-10Hz di interesse ingegneristico per spessori delle coperture ben oltre i cento metri;
- presenza di fenomeni di risonanza, distinti come $f_0 < 2$ Hz per spessori delle coperture maggiori di 30 metri, 2Hz $< f_0 < 8$ Hz per spessori compresi tra 30 e 10 metri, $f_0 > 8$ Hz per spessori minori di 10 metri.

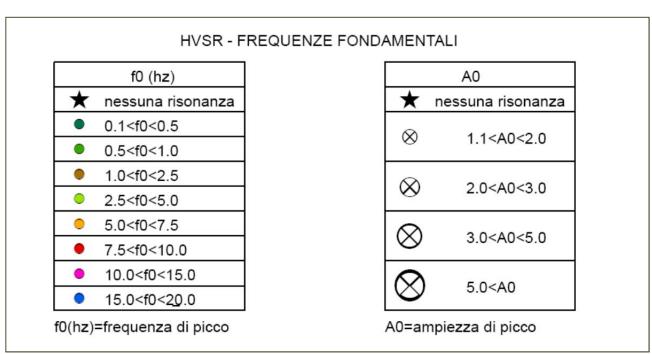

Le combinazioni di due substrati (lapideo stratificato "S" e coesivo non stratificato "NS") e i tre diversi inervalli degli spessori delle coperture forniscono sei possibili zone che caratterizzano il territorio di Carmignano. In ciascuna carta MOPS sono riportate in legenda solo le zone effettivamente presenti nell'areale considerato.

Tutte le coperture, come ricordato, sono state considerate come omogenee; in particolare nelle due aree di indagine dove si rilevano depositi fluvio-lacustri e alluvionali recenti (Comeana e Seano) le coperture sono state attribuite mediamente alle sabbie limose/limo sabbioso della legenda proposta negli ICMS 2008 e s.m.i.; infatti si tratta di depositi granulometricamente molto variabili, connessi ad ambienti deposizionali che hanno visto nel tempo rapide variazioni di competenza delle correnti fluide di trasporto dei sedimenti: i depositi generatisi presentano quindi una elevata variabilità sia verticale che orizzontale, in spazi ristretti, delle dimensioni granulometriche e delle tessiture che comunque alla scala della sollecitazione sismica possono essere ritenuti qualitativamente omogenei (come confermato anche dalle misure di microtremore).

Per le zone di Bacchereto e Carmignano, le coperture sono invece costituite da falde detritiche o corpi di frana, se con spessori superiori a 3 metri, dove la granulometria dei materiali risulta più grossolana (ghiaia sabbiosa/sabbia ghiaiosa) avendo subito un trasporto molto limitato.

Realizzandosi in genere una situazione di *alto contrasto di impedenza sismica atteso tra copertura e substrato rigido entro alcune decine di metri* e comunque essendo tutte le coperture fluvio-lacustri caratterizzate da potenziale di liquefazione, ai sensi del DPGR 53/R/2011, gli viene attribuita una pericolosità S.3.

6.1.3 Zone suscettibili di instabilità


Sono qui raccolte tutte le porzioni di territorio dove si hanno evidenze geomorfologiche di fenomeni che possono essere attivati o riattivati dall'evento sismico.

Nelle aree indagate non sono state rilevate situazioni mappabili, alla scala degli elaborati, relative a cedimenti differenziali per differenti capacità di addensamento dei terreni a seguito di fenomeni di scuotimento sismico; infatti, come anche rilevato nei capitoli precedenti, le coperture "addensabili" non sono state articolate al loro interno a seguito della variabilità granulometrica in spazi ristretti (e in ogni caso tale occorrenza appare assai remota). Le indagini di dettaglio, alla scala progettuale del singolo intervento, dovranno comunque verificare tale aspetto, congiuntamente a quello legato ai fenomeni di liquefazione che, come ricordato in premessa, sono di fatto potenzialmente possibili in corrispondenza di tutti i depositi di copertura rilevati nelle quattro aree di indagine.

La legenda sottolinea anche quelle forme di superficie che possono indicare l'insorgenza di fenomeni 2D connessi alla presenza di strutture fortemente direzionali (creste e valli, anche sepolte) che possono focalizzare l'onda sismica relativamente alla particolare morfologia locale.

Per le zone suscettibili di instabilità il DPGR 53/R/2011 prevede un inserimento in classe di pericolosità S.3 che diventa S.2 nel solo caso si tratti di un corpo di frana inattiva.

6.1.4 Frequenze fondamentali delle coperture da prove HVSR

Poiché è stato scelto di rappresentare in un unico supporto cartografico sia le MOPS che le frequenze fondamentali delle coperture, la parte terminale della legenda descrive le informazioni derivate dalle misure HVSR effettuate.

Per ciascun punto di misura (individuato sulla carta con un numero cui corrisponde la relativa scheda in Appendice) sono riportati, con una simbologia che combina colori e dimensione del "marker", il valore f_0 del picco fondamentale e l'ampiezza del picco A_0 (qualitativamente correlabile al contrasto di impedenza fra deposito e substrato).

La simbologia adottata non è in questo caso standardizzata negli ICMS; è stata comunque utilizzata una rappresentazione ritrovata spesso in bibliografia e che risulta di facile lettura e quindi utile per completare l'informazione immediata che si può avere dalle rappresentazioni cartografiche.

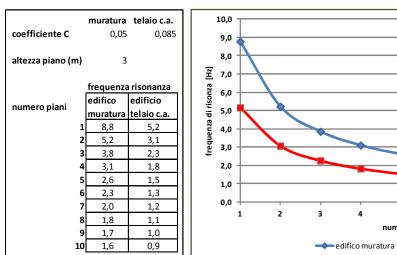
Vengono quindi assunti colori differenti del simbolo (⊗) della misura HVSR per individuare le classi di frequenza del picco di risonanza (e quindi della frequenza fondamentale del terreno), mentre la dimensione del simbolo individua il valore Ao dell'ampiezza del picco che è correlata direttamente al contrasto di impedenza fra copertura e substrato e che fornisce un'informazione qualitativa sul valore dell'amplificazione attesa in caso di sisma che si sviluppa nell'attraversamento del terreno da parte dell'onda sismica.

L'informazione fornisce quindi in modo diretto, anche se semi-quantitativo, indicazioni sui possibili effetti attesi di amplificazione della sollecitazione sismica. Infatti dalla formula molto semplificata proposta da G.Pratt (da utilizzare solamente in prima approssimazione) che mette in correlazione il periodo proprio di vibrazione di un edificio con la sua altezza è possibile orientativamente individuare quale tipologia di edifici si potrebbe trovare a vibrare a frequenze simili a quelle riscontrate nei terreni e quindi subire i pericolosi effetti di risonanza.

Il grafico seguente (Figura 3), utilizzando la correlazione empirica

$$T_{ed} \cong Ch_{ed}^{3/4}$$

dove: T_{ed} indica il periodo proprio di vibrazione dell'edificio espresso in secondi, C è un coefficiente che dipende dalla tipologia costruttiva dell'edifico (muratura o telaio c.a.)


 h_{ed} è l'altezza dell'edificio in metri

e ricordando che la freguenza è l'inverso del periodo

$$f = \frac{1}{T}$$

permette di valutare in modo speditivo le tipologie di edifici che possono risentire degli effetti di massima amplificazione connessi alla frequenza fondamentale di vibrazione espressa dal terreno (quando le due frequenze corrispondono si hanno effetti di risonanza catastrofica).

Figura 3 – rapporti indicativi fra numero dei piani di un edificio e sua frequenza di vibrazione

6.2 Le carte MOPS del territorio comunale di Carmignano

Di seguito si riporta una descrizione delle carte sviluppate per ciascun centro abitato esaminato, sottolineando gli aspetti interpretativi che hanno condotto alla ricostruzione proposta e quindi la valutazione della qualità delle cartografie sviluppata secondo quanto indicato nella deliberazione GRT n.741/2012 (tenendo conto sia dei dati di indagini pregresse, sia delle nuove prove HVSR sviluppate nel presente studio).

6.2.1 Bacchereto (Tav.MS01)

La maggior parte dell'abitato si sviluppa su substrato sub-affiorante, mentre le coperture dovute a corpi detritici con spessori superiori a 3 metri, ma sempre inferiori ai 10 metri, sono limitate a modeste porzioni anche se urbanizzate.

Le prove HVSR non evidenziano picchi significativi per la frequenza fondamentale dei depositi/coltri di alterazione, mostrando per tutto il territorio una sostanziale assenza di amplificazione del segnale sismico. Sono evidenti alcuni picchi molto direzionali alle basse frequenze, probabilmente riconducibili sia alla morfologia di superfici che alle interfacce di tipo tettonico fra i substrati delle zone 1 e 2; tale evenienza sembra però incidere nel campo di frequenze distanti da quelle ingegneristiche, almeno per le tipologie costruttive che possono essere immaginate per l'abitato di Bacchereto.

Non appaiono pertanto necessarie particolari prescrizioni e/o raccomandazioni da inserire nelle norme tecniche di attuazione relativamente alla fattibilità degli interventi ammessi dal R.U. salvo quelle previste dalle norme tecniche sulle costruzioni (NTC 2008 e DPGR 36/R/2009).

6.2.1.1 Livello di qualità della carta MOPS

Il livello di qualità finale della carta, basato sulle specifiche della delibera GRT n.741/2012 viste in premessa, risulta **B** (vedi Figura 4); il calcolo è stato sviluppato sulla maglia di celle sovrapposta a tutto l'abitato esaminato (non solo alle porzioni interessate dalle coperture come previsto dalla metodologia, in quanto le porzioni di territorio con copertura simicamente significativa risultano praticamente assenti).

Figura 4 – valutazione qualità carta MS livello 1 dell'abitato di Bacchereto

						valutazi	one i	ndicatore - punte	aaio			VAL	_ORI	contribu
parametro	peso p	indicatore	peso i	nulla	0	bassa	0,33		0,66	alta	1	ind	par	FQ
		anno rilevamento	0,33	no data		< 2000				>2000	1	0,33		
arta geologico-tecnica	1	progetto	0,33	no data		altro		allegato P.Urb.		ad hoc	1	0,33	0,99	24,8
		scala rilevamento	0,33	no data		50.000÷26.000		25.000÷11.000		10.000÷2.000	1	0,33	Ť	
		numero sondaggi distr.	0,33	no data	1	1÷5		6÷10		>10		0,00		
sondaggi a distruzione	0,5	% celle occupate	0,33	no data	1	1÷33%		34÷66%		>66%		0,00	0,00	0,0
		num. sondaggi raggiungono substrato	0,33	no data	1	1÷5		6÷10		>10		0,00		
sondaggi a carotaggio		numero sondaggi c.c.	0,33	no data		1÷5	1	6÷10		>10		0,11		
continuo	1	% celle occupate		no data		1÷33%	1	34÷66%		>66%			0,33	8,2
Continuo		num. sondaggi raggiungono substrato	0,33	no data		1÷5	1	6÷10		>10		0,11		
		numero di misure		no data		1÷5	1	6÷10		>10		0,11		
indagini geofisiche	0,5	% celle occupate		no data		1÷33%	1	34÷66%		>66%			0,55	6,8
		% indagini raggiungono substrato rigido	0,33	no data		1÷33%		34÷66%		>66%	1	0,33		
prove geotecniche in		numero di prove		no data		1÷5		6÷10		>10	1	0,33		
situ e di laboratorio	0,25	% celle occupate		no data		1÷33%	1	34÷66%		>66%			0,77	4,8
ona e ai laboratorio		% prove raggiungono substrato rigido	0,33	no data		1÷33%		34÷66%		>66%	1	0,33		
misure delle frequenze		numero di misure		no data		1÷5	1	6÷10		>10		0,11		
del sito	0,75	% celle occupate		no data		1÷33%	1	34÷66%		>66%			0,33	6,1
del 3ito		classe affidabilità misure (*)	0.33	no data		classe A 1÷33%	1	classe A 34÷66%		classe A >66%		0,11		

6.2.2 Carmignano (Tav.MS02)

L'abitato di Carmignano e sue frazioni, che si sviluppa totalmente su dorsali morfologiche piuttosto accentuate, è impostato quasi esclusivamente sulla zona 1 comprendente *substrato lapideo stratificato*.

Pertanto anche in questo caso, come per Bacchereto, fenomeni di potenziale amplificazione della sollecitazione sismica si presenterebbero unicamente nelle modeste porzioni di accumulo di corpi di frana quiescenti con spessori superiori ai 3 m ma generalmente inferiori a 10 m.

Nella frazione di Santa Cristina a Mezzana, dove si hanno contatti tettonici fra la zona 1 e la zona 2, risulterebbero più evidenti fenomeni di amplificazione 2D fortemente direzionali legati sia ai rilievi geomorfologici sia ai contatti "bruschi" fra le due zone che caratterizzano il substrato; come per Bacchereto si sviluppano in campi di frequenza non di stretto interesse ingegneristico (almeno per le tipologie edilizie che si possono ipotizzare per questa zona).

Anche in questo caso non appaiono pertanto necessarie particolari prescrizioni e/o raccomandazioni da inserire nelle norme tecniche di attuazione relativamente alla fattibilità degli interventi ammessi dal R.U. salvo quelle previste dalle norme tecniche sulle costruzioni (NTC 2008 e DPGR 36/R/2009).

6.2.2.1 Livello di qualità della carta MOPS

Il livello di qualità finale della carta, basato sulle specifiche della delibera GRT n.741/2012 viste in premessa, risulta **C** (vedi Figura 4); il calcolo è stato sviluppato sulla maglia di celle sovrapposta a tutto l'abitato esaminato (non solo alle porzioni interessate dalle coperture come previsto dalla metodologia, in quanto le porzioni di territorio con copertura simicamente significativa risultano praticamente assenti). La presenza di substrato affiorante appartenente prevalentemente alla Formazione del Macigno con chiare evidenze di superficie (affioramenti delle bancate arenacee) ha fatto sì che le indagini anche per le costruzioni più recenti si siano limitate a saggi con escavatore; inoltre la posizione sostanzialmente di crinale di tutto l'abitato esaminato non ha neanche indotto alla terebrazione di pozzi per acqua (il livello acquifero sfruttabile si trova sicuramente a notevole profondità), perciò risultano praticamente assenti indagini dirette e geofisiche.

Figura 5 – valutazione qualità carta MS livello 1 dell'abitato di Carmignano

						valutazi	one i	ndicatore - punte	ggio			VAL	LORI	contribut
parametro	peso p	indicatore	peso i	nulla	0	bassa	0,33	media	0,66	alta	1	ind	par	FQ
		anno rilevamento	0,33	no data		< 2000				>2000	1	0,33		
carta geologico-tecnica	1	progetto	0,33	no data		altro		allegato P.Urb.		ad hoc	1		0,99	24,8
		scala rilevamento	0,33	no data		50.000÷26.000		25.000÷11.000		10.000÷2.000	1	0,33		
		numero sondaggi distr.	0,33	no data		1÷5	1	6÷10		>10		0,11		
sondaggi a distruzione	0,5	% celle occupate	0,33	no data		1÷33%	1	34÷66%		>66%		0,11	0,33	4,1
		num. sondaggi raggiungono substrato	0,33	no data		1÷5	1	6÷10		>10		0,11		
sondaggi a carotaggio		numero sondaggi c.c.	0,33	no data	1	1÷5		6÷10		>10		0,00		
continuo	1	% celle occupate	0,33	no data	1	1÷33%		34÷66%	·······	>66%		0,00	0,00	0,0
CONTINUO		num. sondaggi raggiungono substrato	0,33	no data	1	1÷5		6÷10		>10		0,00		
		numero di misure	0,33	no data	1	1÷5		6÷10		>10		0,00		
indagini geofisiche	0,5	% celle occupate	0,33	no data	1	1÷33%	30303030303030	34÷66%	*>*>*>*>*>*>*>*>*>*>	>66%	**********	0,00	0,00	0,0
		% indagini raggiungono substrato rigido	0,33	no data	1	1÷33%		34÷66%		>66%		0,00		
		numero di prove	0,33	no data		1÷5		6÷10		>10	1	0,33		
prove geotecniche in	0,25	% celle occupate	0,33	no data		1÷33%		34÷66%	1	>66%		0,22	0.88	5,5
situ e di laboratorio		% prove raggiungono substrato rigido	0,33	no data		1÷33%		34÷66%		>66%	1	0,33	ŕ	
		numero di misure	0,33	no data		1÷5		6÷10	1	>10		0,22		
misure delle frequenze	0,75	% celle occupate	0,33	no data		1÷33%	1	34÷66%	······	>66%		0,11	0.44	8,2
del sito		classe affidabilità misure ^(*)	0.33	no data		classe A 1÷33%	1	classe A 34÷66%		classe A >66%		0,11	- /	

6.2.3 Comeana (Tav.MS03)

L'area di indagine di Comeana presenta una zonazione MOPS in quattro fasce orientate NO-SE.

La prima fascia, partendo da SO e procedendo verso NE, è totalmente ricompresa nella zona 1 relativa a zone stabili impostate su *substrato lapideo stratificato*; la presenza del substrato sub-affiorante comporta l'assenza di fenomeni di amplificazione del segnale sismico e quindi gli scuotimenti attesi sono desumibili dai valori di accelerazione indicati negli allegati alle NTC 2008 – d.m. 14.01.2008 per la categoria di sottosuolo A.

Le tre fasce successive, corrispondenti alle zone 3, 4 e 5 di legenda, sono tutte impostate su coperture che variano nello spessore e nel tipo di substrato.

La zona 3 comprende le aree dove le coperture presentano spessori compresi tra 3 e 10 metri su *substrato coesivo non stratificato*. Gli spessori delle coperture appaiono molto variabili e non definibili in dettaglio alla scala del presente studio a seguito del rilievo morfologico attuale molto articolato (incisioni vallive con direzione SO-NE, anche molto accentuate) e della presumibile morfologia, anch'essa molto articolata, dell'interfaccia fra roccia in posto (costituita da Complesso Caotico – Formazione di Sillano) e coperture, ereditata dallo sviluppo topografico di bordo bacino precedente alla sedimentazione fluvio-lacustre del bacino Firenze-Prato-Pistoia.

La presenza di un substrato poco rigido (il Complesso Caotico o di Base presenta spesso velocità Vs inferiori agli 800 m/sec) e di coperture piuttosto compatte e addensate, comporta contrasti di impedenza sismica non particolarmente elevati all'interfaccia fra coperture e roccia in posto.

La zona 4 comprende una fascia meno incisa della precedente, dove lo spessore delle coperture varia fra 10 e 20 metri, sempre su substrato poco rigido. Anche in questo caso gli spettri H/V non presentano picchi significativi, a testimonianza di valori di impedenza sismica confrontabili fra substrato e depositi di copertura. La presenza dell'area industriale/artigianale, con aziende attive 24 ore al giorno e sette giorni su sette, non rende agevoli le registrazioni HVSR (disturbo dei telai su frequenze prossime a quelle di risonanza del terreno).

Infine la zona 5, presente nell'estrema porzione nord-orientale dell'area indagata, comprende depositi con spessori fra 10 e 20 metri su *substrato lapideo stratificato* (Macigno di Londa). La ricostruzione è stata realizzata in modo indiretto attraverso l'esame della geologia nelle aree contermini (comune di Poggio a Caiano) e sulla base delle indagini HVSR che forniscono delle risposte molto chiare e ben interpretabili (anche in analogia con quanto misurato nell'area di Seano, geologicamente meglio definita); mancano invece pozzi o sondaggi che possano permettere un riscontro diretto. In questo caso i contrasti di impedenza sismica fra substrato e coperture appaiono molto elevati come testimoniato dall'ampiezza dei picchi H/V ($A_0 > 5$).

Per la zona 1 non appaiono necessarie particolari raccomandazioni o prescrizioni da attuare, relativamente agli aspetti di pericolosità sismica, salvo quelle previste dalle norme sulle costruzioni (NTC 2008 e dPGR 36/R/2009).

Per le zone 3 e 4 diviene invece necessario indagare, a livello di strumento attuativo o di singolo progetto, la possibile insorgenza di fenomeni di liquefazione connessi a livelli a granulometria prevalentemente sabbiosa sotto falda. Per quanto riguarda possibili effetti di amplificazione locale dovuti a contrasti di impedenza, benché appaia generalizzata l'assenza di valori alti, la complessità della storia geologica non permette di escludere la presenza, al di sotto delle coperture, di ampie porzioni di substrato ad alta rigidità (blocchi delle formazioni flyshoidi arenacee all'interno del Complesso Caotico – come peraltro abbastanza evidente nel contermine territorio comunale di Poggio a Caiano); pertanto risulta necessario approfondire tale eventualità a livello del singolo progetto di intervento, associando alle indagini geofisiche e

geotecniche di cui alle norme per le costruzioni (NTC 2008 e dPGR 36/R/2009), anche delle misure di HVSR che, come verificato, ben discriminano le caratteristiche dei possibili substrati presenti nell'area.

Infine per la zona 5 occorre prevedere, sempre a livello di strumento attuativo o di singolo progetto, approfondimenti in merito alla possibile insorgenza di fenomeni di liquefazione e una valutazione dell'amplificazione dello scuotimento legata al forte contrasto di impedenza presente al passaggio substrato rigido e coperture; stante la presenza dell'interfaccia ad una profondità compresa fra 20 e 30 metri, nel caso di interventi di maggiori dimensioni (che rientrano nelle classi di indagine 3 e 4 così come definite nel DPGR 36/R/2009) risulta opportuno arrivare ad indagare in modo diretto la profondità di tale interfaccia.

6.2.3.1 Livello di qualità della carta MOPS

Il livello di qualità finale della carta, basato sulle specifiche della delibera GRT n.741/2012 viste in premessa, risulta **B** (vedi Figura 6); il calcolo è stato sviluppato sulla maglia di celle sovrapposta a tutto l'abitato esaminato per coerenza con i centri abitati di Bacchereto e Carmignano.

Figura 6 – valutazione qualità carta MS livello 1 dell'abitato di Comeana

						valutazione indicatore - punteggio						VALORI		contribute
parametro	peso p	indicatore	peso i	nulla	0	bassa	0,33	media	0,66	alta	1	ind	par	FQ
carta geologico-tecnica		anno rilevamento	0,33	no data		< 2000				>2000	1	0,33	3 0,99	24,8
		progetto	0,33	no data		altro		allegato P.Urb.		ad hoc	1	0,33		
		scala rilevamento	0,33	no data		50.000÷26.000		25.000÷11.000		10.000÷2.000	1	0,33		
sondaggi a distruzione	0,5	numero sondaggi distr.	0,33	no data		1÷5	1	6÷10		>10		0,11		
		% celle occupate	0,33	no data		1÷33%	1	34÷66%		>66%		0,11	0,33	4,1
		num. sondaggi raggiungono substrato	0,33	no data		1÷5	1	6÷10		>10		0,11		
sondaggi a carotaggio continuo		numero sondaggi c.c.	0,33	no data		1÷5		6÷10		>10	1	0,33	0,66	16,4
		% celle occupate	0,33	no data	*********	1÷33%	1	34÷66%		>66%		0,11		
		num. sondaggi raggiungono substrato	0,33	no data		1÷5		6÷10	1	>10		0,22		
indagini geofisiche		numero di misure	0,33	no data		1÷5		6÷10	1	>10		0,22	0,54	6,8
		% celle occupate	0,33	no data		1÷33%	1	34÷66%		>66%		0,11		
		% indagini raggiungono substrato rigido	0,33	no data		1÷33%		34÷66%	1	>66%		0,22		
prove geotecniche in situ e di laboratorio		numero di prove	0,33	no data		1÷5		6÷10		>10	1	0,33	0,66	4,1
		% celle occupate	0,33	no data	~~~~~	1÷33%		34÷66%	1	>66%		0,22		
		% prove raggiungono substrato rigido	0,33	no data		1÷33%	1	34÷66%		>66%		0,11		
misure delle frequenze del sito	0,75	numero di misure	0,33	no data		1÷5		6÷10	1	>10		0,22		8,2
		% celle occupate	0,33	no data		1÷33%	1	34÷66%		>66%		0,11 () 0,11	0,44	
		classe affidabilità misure (*)	0.33	no data		classe A 1÷33%	1	classe A 34÷66%		classe A >66%				

6.2.4 **Seano (Tav.MS04)**

Anche l'area di indagine di Seano presenta una zonazione MOPS in fasce orientate NO-SE, connesse sostanzialmente all'alternarsi di substrato con caratteristiche elastiche differenti al quale si sovrappongono depositi sciolti sedimentati su una precedente morfologia di valle debolmente incisa (da ricondurre alle dinamiche morfologiche antecedenti la sedimentazione fluvio-lacustre del bacino Firenze-Prato-Pistoia).

Nella porzione meridionale dell'area indagata, affiorano i substrati di tipo *lapideo stratificato* e *coesivo non stratificato* (zone 1 e 2); in entrambi i casi si tratta di situazioni per le quali non si hanno picchi evidenti nel range di frequenze di interesse ingegneristico (0.5-10 Hz), pertanto si può assumere come assente un'amplificazione sismica. In queste zone, salvo le porzioni interessate da movimenti gravitativi quiescenti o inattivi, non appaiono necessarie particolari raccomandazioni o prescrizioni da attuare oltre quelle previste dalle norme sulle costruzioni (NTC 2008 e dPGR 36/R/2009). Per le modeste aree interessate dai fenomeni franosi quiescenti o inattivi, qualora vi insistessero previsioni di strumento attuativo o di singolo progetto, dovranno essere effettuate indagini di dettaglio che meglio ne circoscrivano le geometrie e i possibili meccanismi di riattivazione.

Le zone 3, 4 e 5 si riferiscono a porzioni di territorio dove i depositi di copertura giacciono sul substrato rigido lapideo stratificato. In carta sono evidenziate da tonalità di verde crescete di intensità a sottolineare l'aumento di spessore dei depositi. Il forte contrasto di impedenza sismica fra depositi fluvio-lacustri e substrato lapideo comporta l'insorgenza di picchi di amplificazione del rapporto H/V molto significativi proprio nel range delle frequenze ingegneristiche.

Per tutte queste zone diviene pertanto necessario prevedere, alla scala dello strumento attuativo o del singolo progetto, un'attenta valutazione della risposta sismica locale che permetta la definizione di uno spettro di risposta adeguato alla reale situazione riscontrata attraverso indagini geofisiche spinte fino alla profondità dell'interfaccia sedimenti-substrato (facilmente desumibile dalle carte allegate). Sono queste, infatti, le situazioni non ricomprese nell'abaco semplificato delle categorie di sottosuolo delle NTC 2008.

A ciò si aggiunge la necessità di verificare il rischio di insorgenza di fenomeni di liquefazione, elemento di attenzione presente in tutte queste zone.

Per le zone 6 e 7 i fenomeni di amplificazione del segnale sismico appaiono meno significativi a seguito del più basso contrasto di impedenza sismica fra substrato coesivo non stratificato e depositi fluvio-lacustri.

La scala del presente studio non ha comunque permesso una individuazione di dettaglio dei limiti fra queste zone e quelle del gruppo precedente (3, 4 e 5), pertanto risulta necessario approfondire a livello del singolo progetto di intervento la reale natura del substrato associando alle indagini geofisiche e geotecniche di cui alle norme per le costruzioni (NTC 2008 e DPGR 36/R/2009), anche delle misure di HVSR che ben discriminano le caratteristiche dei possibili substrati presenti nell'area. Qualora l'approfondimento riconducesse a collocare l'area di progetto su una zona a substrato lapideo stratificato, valgono le prescrizioni delle zone 3, 4 e 5.

Anche in questo caso si aggiunge la necessità di indagare la possibile insorgenza di fenomeni di liquefazione.

6.2.4.1 Livello di qualità della carta MOPS

Il livello di qualità finale della carta, basato sulle specifiche della delibera GRT n.741/2012 viste in premessa, risulta **B** (vedi Figura 7); il calcolo è stato sviluppato sulla maglia di celle sovrapposta a tutto l'abitato esaminato per coerenza con i centri abitati di Bacchereto e Carmignano.

Figura 7 – valutazione qualità carta MS livello 1 dell'abitato di Seano

						valutazio	one i	ndicatore - punte	ggio			VAL	LORI	contribut
parametro	peso p	indicatore	peso i	nulla	0	bassa	0,33	media	0,66	alta	1	ind	par	FQ
		anno rilevamento	0,33	no data		< 2000				>2000	1	0,33		
carta geologico-tecnica	1	progetto	0,33	no data	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	altro		allegato P.Urb.		ad hoc	1	0,33	0,99	24,8
		scala rilevamento	0,33	no data		50.000÷26.000		25.000÷11.000		10.000÷2.000	1	0,33		
sondaggi a distruzione		numero sondaggi distr.	0,33	no data		1÷5	1	6÷10		>10		0,11	\Box	
	0,5	% celle occupate	0,33	no data	**********	1÷33%	1	34÷66%		>66%		0,11	0,33	4,1
		num. sondaggi raggiungono substrato	0,33	no data		1÷5	1	6÷10		>10		0,11		
		numero sondaggi c.c.	0,33	no data		1÷5	1	6÷10		>10		0,11	\Box	
sondaggi a carotaggio	1	% celle occupate	0,33	no data	***********	1÷33%	1	34÷66%	***********	>66%	*3*3*3*3*3*3	0,11	0,33	8,2
continuo		num. sondaggi raggiungono substrato	0,33	no data		1÷5	1	6÷10	**********	>10	***********	0,11		
		numero di misure	0,33	no data		1÷5	1	6÷10		>10		0,11		4,1
indagini geofisiche	0,5	% celle occupate	0,33	no data		1÷33%	1	34÷66%		>66%		0,11	0,33	
		% indagini raggiungono substrato rigido	0,33	no data		1÷33%	1	34÷66%		>66%		0,11		
prove geotecniche in		numero di prove	0,33	no data		1÷5		6÷10		>10	1	0,33		
situ e di laboratorio	0,25	% celle occupate	0,33	no data		1÷33%		34÷66%		>66%	1	0,33	0,77	4,8
situ e di laboratorio		% prove raggiungono substrato rigido	0,33	no data	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1÷33%	1	34÷66%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>66%		0,11		
minura dalla fraguanza		numero di misure	0,33	no data		1÷5		6÷10		>10	1	0,33		
misure delle frequenze del sito	0,75	% celle occupate	0,33	no data		1÷33%	1	34÷66%		>66%		0,11	0,55	10,3
JEI SILO		classe affidabilità misure (*)	0.33	no data		classe A 1÷33%	1	classe A 34÷66%		classe A >66%		0,11	.	Ť

59100 PRATO - Via del Vergaio, 19 Tel/fax 0574/41.843 E-mail: <u>atomei@libero.it</u> p.iva 01728910975 c.f. TMOLRT61P06D612D

COMUNE DI CARMIGNANO

REGOLAMENTO URBANISTICO

Studio di Microzonazione Sismica di l° livello ai sensi del DPGR.n.53/R/11 e della Del.G.R.741/2012

Appendice
Schede tecniche delle singole misure HVSR

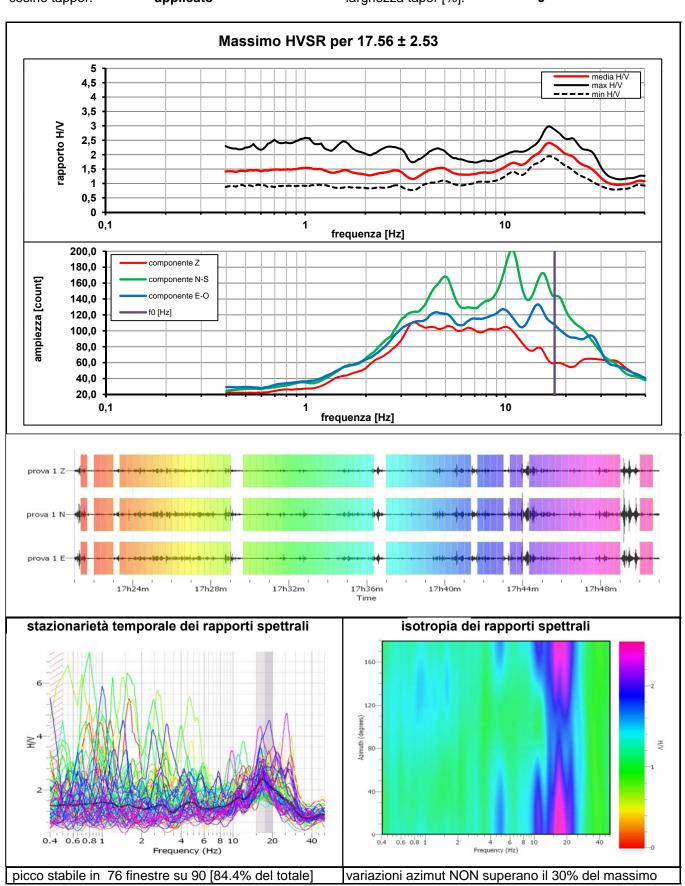
IL GEOLOGO

01 - BACCHERETO

BACCHERETO - prova 1

località:	BAC	CHE	RET	O		data:		14/08/2012	ora:	17:21:24		
operatore:	Man	tovar	ni									
latitudine:	43,8	1175	N			longitudine:		10,98393E	quota s.l.m.: 200	١		
nome stazione:	prov	/a 1				orientamento strumento rispetto al Nord:			55°			
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz				
nome file:	me file: MT_20120814_172124.											
gain:				freq.campion.[Hz]:		300	durata rec. [mm:	ss]: 30.00				
	VEN	ITO		ass	ente	debole (5m/s)	m	edio forte	Misurato: raffic	ato		
condizioni meteo	PIOGGIA X assente debole medio forte								Misurato			
	temp	oerati	ura (°	°C ap	prox)		Note:				
natura terreno appoggio	X	X terra X dura soffice ghiaia sabbia roccia X erba X bassa alta alta asfalto cemento calcestruzzo pavimentato altro										
	X	X suolo asciutto Suolo umido Note:										
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia				
densità edifici:		nessu	uno	X dis	persi	addensati	alt	ro, tipologia				
transienti:	nessano	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore moi (fabbriche,cantieri lavo X no si, tipol		,		
automobili			X					strutture nelle vicir	albert, sort	idaggi, edifici, ponti,		
camion		Χ						(descrizione, altezza, dist	anza) strutture s	otterranee,		
pedoni	X						4					
altro												
						(1) X			note:			

- le raffiche di vento fanno oscillare gli alberi circostanti disturbando il segnale


copertura: colluvium/detrito bedrock: F. M.Morello

BACCHERETO - prova 1

Inizio registrazione [data ora]: 14/08/2012 17:21:24

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1520

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PROGETTO SESAME														
	Criteri per una cu [devono ess			[R]										
i R	f ₀ > 10 / L _w	ere soudisi	17.56		0.50	ok								
	$n_c(f_0) > 200$			>										
ii R	****	2 511-	26697	>	200	ok								
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f_{0} <$		eccede	su	286	ok								
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < f$		0 Rebieve IC	1	punti									
	Criteri per un p [è stato escluso il criterio vC: aln		_	-	sfatti]									
i C														
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		30.540	Hz		no ok								
iii C	A ₀ > 2		2.34	>	2	ok								
iv C	$f_{\text{peak}}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5^{\circ}$	%	0.050	<	0.05	ok								
v C	$\sigma_f < \varepsilon(f_0)$ 2.53145 < 0.87819													
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.238 < 1.58													
L _w larghezza della finestra [s]														
n _w numero di finiestre utilizzate per l'analisi [num]														
$n_c = L_w n_w f_0$ numero di clicli significativi [num]														
f ₀	f f P ' 110/F117													
f	frequenza													
$\sigma_{\scriptscriptstyle{f}}$	deviazione standard della frequenza	ı di picco d	i H/V [Hz]			± 2.53								
$\varepsilon(f_0)$	valore soglia per condizioni di stabili	tà $\sigma_{\rm f} < \epsilon(f_0)$) - vedi tabe	ella sotto		0.88								
A_0	ampiezza del picco H/V alla frequen					2.34								
$A_{H/V}(f)$	ampiezza della curva H/V alla freque	enza f		ampiezza della curva H/V alla frequenza f										
	frequenza fra $f_0/4$ e f_0 per la quale $A_{H/V}(f^-) < A_0/2$													
f ⁻														
f ⁻	frequenza fra f ₀ e 4f ₀ per la quale A _H													
	frequenza fra f_0 e $4f_0$ per la quale A_H deviazione standard di A_0					± 1.23								
f^+ $\sigma_A(f_0)$ $\sigma_A(f)$	frequenza fra f_0 e $4f_0$ per la quale A_H deviazione standard di A_0 deviazione standard di $A_{H/V}(f)$	$A_{I/V}(f^+) < A_{O}$				±1.23								
f^{+} $\sigma_{A}(f_{0})$ $\sigma_{A}(f)$ $\sigma_{logH/V}(f)$	frequenza fra f_0 e $4f_0$ per la quale A_H deviazione standard di A_0 deviazione standard di $A_{H/V}(f)$ deviazione standard della curva log	$A_{H/V}(f^+) < A_{0}/V$ $A_{H/V}(f)$	/2											
f^+ $\sigma_A(f_0)$ $\sigma_A(f)$	frequenza fra f ₀ e 4f ₀ per la quale A _H deviazione standard di A ₀ deviazione standard di A _{H/V} (f) deviazione standard della curva log valore soglia per la condizione di sta	$A_{H/V}(f^+) < A_{O'}$ $A_{H/V}(f)$ Abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec			± 1.23								
$\begin{array}{c} f^+ \\ \sigma_A(f_0) \\ \sigma_A(f) \\ \end{array}$	frequenza fra f ₀ e 4f ₀ per la quale A _H deviazione standard di A ₀ deviazione standard di A _{H/V} (f) deviazione standard della curva log valore soglia per la condizione di sta	$A_{H/V}(f^+) < A_{O'}$ $A_{H/V}(f)$ $A_{H/V}(f)$ $A_{H/V}(f)$ $A_{H/V}(f)$	$< \theta(f_0)$ - vec	0.5 – 1.0	1.0 – 2.0	1.58								
f^{+} $\sigma_{A}(f_{0})$ $\sigma_{A}(f)$ $\sigma_{logH/V}(f)$	frequenza fra f_0 e $4f_0$ per la quale A_H deviazione standard di A_0 deviazione standard di $A_{H/V}(f)$ deviazione standard della curva log valore soglia per la condizione di state	$A_{H/V}(f^+) < A_{O'}$ $A_{H/V}(f)$ Abilità $\sigma_A(f)$ $c = 0.2$ $c = 0.25 f_0$	$< \theta(f_0)$ - vec 0.2 - 0.5 0.2 f ₀	0.5 – 1.0 0.15 f ₀	1.0 – 2.0 0.10 f ₀	1.58 > 2.0 0.05 f ₀								
$\begin{array}{c} f^+ \\ \sigma_A(f_0) \\ \sigma_A(f) \\ \end{array}$	frequenza fra f ₀ e 4f ₀ per la quale A _H deviazione standard di A ₀ deviazione standard di A _{H/V} (f) deviazione standard della curva log valore soglia per la condizione di sta	$A_{H/V}(f^+) < A_{O'}$ $A_{H/V}(f)$ $A_{H/V}(f)$ $A_{H/V}(f)$ $A_{H/V}(f)$	$< \theta(f_0)$ - vec	0.5 – 1.0	1.0 – 2.0	1.58								

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

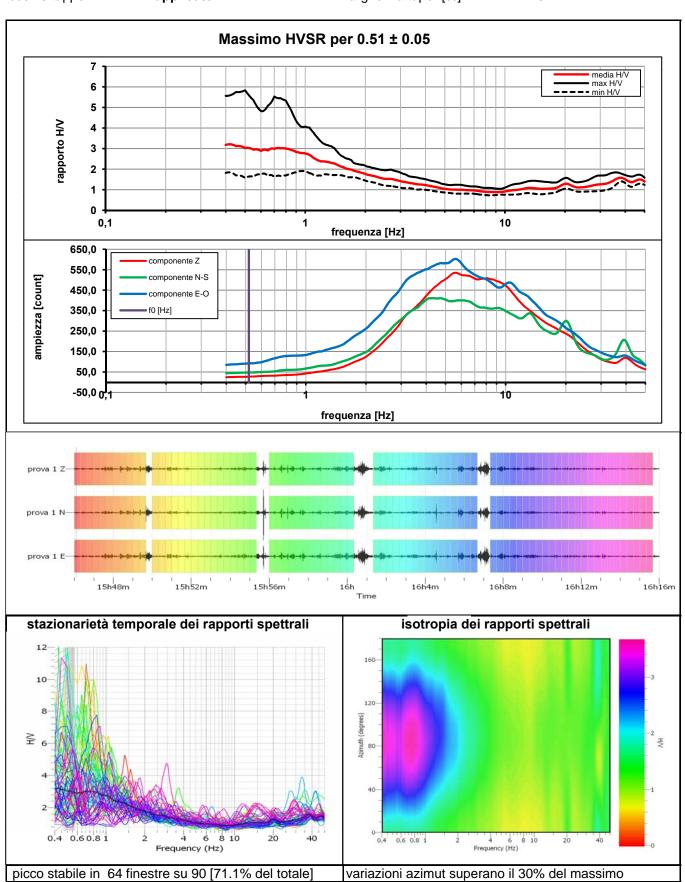
Valutazioni	qualitative
_	

profon. contrasto: 5-10 m
[qualche metro]
contrasto: BASSO

BACCHERETO - prova 2

località: BACCHERETO						data:		14/08/2012	ora:		15:46:19	
operatore:	Man	itovar	ni									
latitudine:	43,8	0752	:N			longitudine:		10,98631E	quota s.l.	.m.: 250		
nome stazione:	prov	/a 2				orientamento strumento rispetto al Nord:				20°		
tipo stazione:	SAF	RA SF	R04H	S		tipo sensori: velocimetri 4,5 Hz						
nome file: MT_20120814_154619.						SAF						
gain:						freq.campion.[Hz]:		300	durata re	c. [mm:ss]:	30.00	
	VEN	ITO		ass	ente	X debole (5m/s)	n	nedio forte	Misu	rato: rafficato		
condizioni meteo	PIO	GGIA	\	ass	ente	debole medio forte			Misurato			
	tem	perat	ura (°	°C ap	prox)		Note:				
natura terrend		X terra X dura soffice ghiaia sabbia roccia roccia asfalto cemento calcestruzzo pavimentato altro										
	X	X suolo asciutto Suolo umido Note:										
accoppiament	o artifi	ciale	al s	uolo:		X no	si	, tipologia				
densità edifici		ness	uno	X dis	spersi	addensati	а	tro, tipologia				
transienti:	nessano	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo	ori, pompe,			
automobili	X							strutture nelle vici		alberi, sondaggi, e	edifici, ponti,	
camion	X							(descrizione, altezza, dis	,	strutture sotterran	ee,	
pedoni	X						_	- centralina dell'ENEL	a circa 15	m		
altro	_											

note:


- forti raffiche di vento fanno oscillare gli alberi circostanti disturbando il segnale copertura: colluvium/detrito bedrock: C. Caotico

BACCHERETO - prova 2

Inizio registrazione [data ora]: 14/08/2012 15:46:19

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1280

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PROGETTO SESAME												
	Criteri per una cu [devono ess			[R]								
i R	$f_0 > 10 / L_w$	ere soudis	0.52	>	0.50	ok						
ii R	$n_c(f_0) > 200$		664		200	ok						
II K		. ∩ EU-7		>		UK						
iii R	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < $		eccede	su	198	ok						
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < f$		0 R chiaro [C	1	punti							
	[è stato escluso il criterio vC: alr		_	-	sfatti]							
i C												
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no						
iii C	A ₀ > 2	-	3.03	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.867	<	0.05	no						
v C	$\sigma_f < \varepsilon(f_0)$ 0.05534 < 0.07782											
vi C	$\sigma_{A}(f_0) < \theta(f_0) \qquad 1.740 < 2$											
I	L _w larghezza della finestra [s]											
f_0	_v n _w f ₀ numero di clicli significativi [num] ₀ frequenza di picco H/V [Hz]											
f	frequenza											
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.05						
ε(f ₀)	valore soglia per condizioni di stabili	ità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	ella sotto		0.08						
A_0	ampiezza del picco H/V alla frequen		ń			3.03						
A _{H/√} (f)	ampiezza della curva H/V alla frequ	enza f										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2									
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _l	$A_{1/1}(f^+) < A_{0/1}$	/2			,						
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.74						
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)											
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log		- 45)									
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	2.00						
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58						
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

Valutazioni qualitative profon. contrasto:

[centinaia di metri]

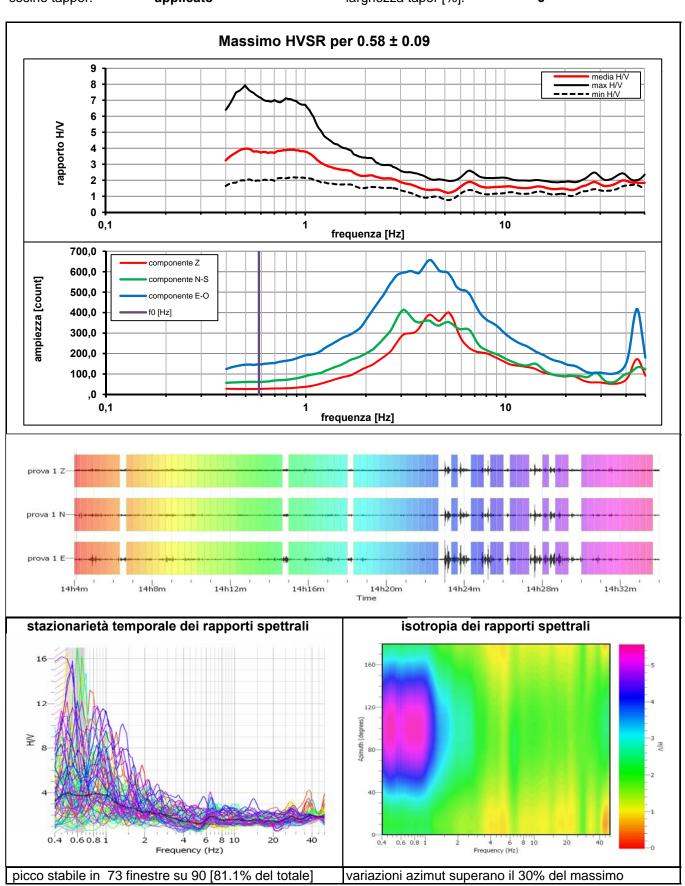
^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

BACCHERETO - prova 3

locali	tà:	BAC	CHE	RET	0		data:		14/08/2012	ora:	14:04:39	
opera	atore:	Man	itovar	ni								
latitud	dine:	43,8	0328	N			longitudine:		10,99403E	quota s.l.m.: 270		
nome	e stazione:	prov	/a 3				orientamento strumento rispetto al Nord:			55°		
tipo s	tazione:	SAR	RA SF	R04H	S		tipo sensori: velocimetri 4,5 Hz					
nome file: MT_20120814_140439.							SAF					
gain:							freq.campion.[Hz]:		300	durata rec. [mm:ss]:	30.00	
		VEN	ITO		ass	ente	debole (5m/s) X	m	edio forte	Misurato: rafficatro		
	ndizioni meteo	PIOGGIA X assente					debole medio forte			Misurato		
		temp	perati	ura (°	°C ap	prox)		Note:			
	ıra terreno opoggio	X	X terra dura X soffice ghiaia sabbia roccia X erba X erba X bassa alta alta asfalto cemento calcestruzzo pavimentato altro									
		X	X suolo asciutto Suolo umido Note:									
ассо	ppiamento	artifi	ciale	al s	uolo:		X no	si,	tipologia			
dens	ità edifici:		nessı	uno	X dis	spersi	addensati	alt	ro, tipologia			
trans	sienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]			nocromatico ori, pompe, corsi d'acqua logia:		
aı	utomobili		X				3		strutture nelle vicii	albert, sortdaggi,	edifici, ponti,	
ca	amion	X							(descrizione, altezza, dis	· _	nee,	
ре	edoni	X							- edificio dist=3 m h	=6 m		
al	ltro											
		<u> </u>						J				

note:

- le raffiche di vento fanno oscillare gli alberi e le strutture circostanti disturbando il segnale copertura: colluvium/detrito bedrock: Macigno


BACCHERETO - prova 3

Inizio registrazione [data ora]: 14/08/2012 14:04:39

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1460

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PR	OGETTO SESAME							
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]							
i R	$f_0 > 10 / L_w$	ere soudisi	0.58	>	0.50	ok		
ii R	$n_c(f_0) > 200$		851		200	ok		
II IX		0 EU-7		>		UK		
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ eccede 217 $\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$ 5 punti							
	$\sigma_{A}(t) < 3$ for $0.5t_0 < t < 2t_0$ if $t_0 < 0.5t_0$. Criteri per un p			1	punti			
	[è stato escluso il criterio vC: alr		_	-	sfatti]			
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	-	no		
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no		
iii C	A ₀ > 2	-	3.79	>	2	ok		
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.501	<	0.05	no		
v C	$\sigma_f < \mathcal{E}(f_0) \qquad 0.09955 \qquad < 0.08744$							
vi C	$\sigma_{A}(f_0) < \theta(f_0) \qquad 1.959 < 2$							
L _w larghezza della finestra [s]								
n _w								
	numero di clicli significativi [num]					73 851		
	frequenza di picco H/V [Hz]					0.58		
f	frequenza							
$\sigma_{\scriptscriptstyle{\mathrm{f}}}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.09		
	valore soglia per condizioni di stabili	ità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	ella sotto		0.09		
A_0	ampiezza del picco H/V alla frequen					3.79		
A _{H/∨} (f)	ampiezza della curva H/V alla freque	enza f				`		
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2					
f ⁺	f ⁺ frequenza fra f ₀ e 4f ₀ per la quale $A_{H/V}(f^+) < A_0/2$							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.95		
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)							
$\sigma_{logH/V}(f)$								
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 2.00							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58		
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2		

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

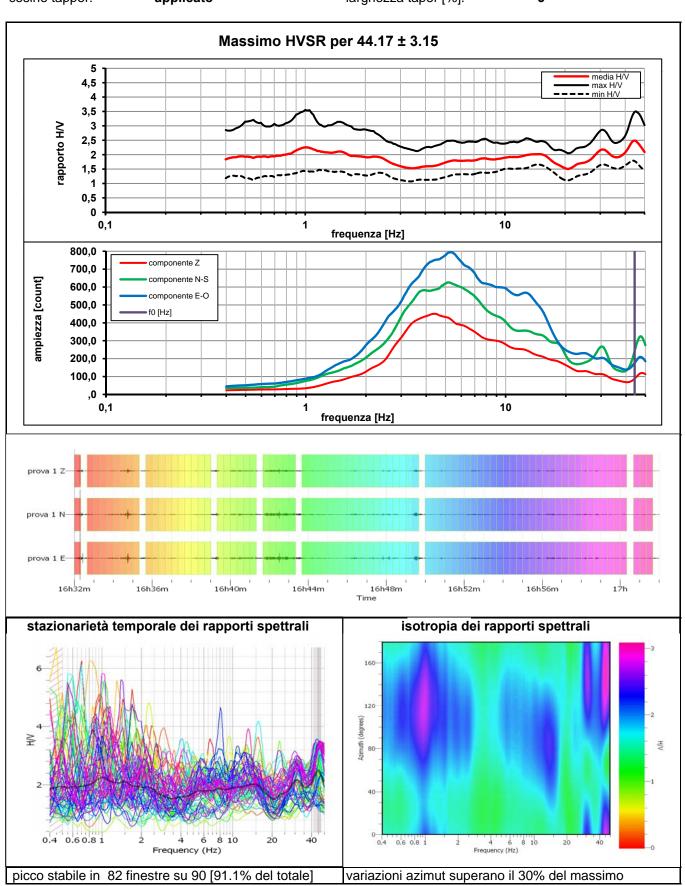
Valutazioni qualitative profon. contrasto:

[centinaia di metri] contrasto:

BACCHERETO - prova 4

località:	BAC	CHE	RET	0		data:		14/08/2012	ora:		16:32:32
operatore:	Man	tovar	ni								
latitudine:	43,80915N					longitudine: 10,99093E			quota s.l.	.m.: 260	
nome stazione:	prov	/a 4				orientamento strume	nt	o rispetto al Nord:	2	280°	
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	ve	elocimetri 4,5 Hz			
nome file:	ne file: MT_20120814_163232.SAF										
gain:						freq.campion.[Hz]:		300	durata re	c. [mm:ss]:	30.00
condizioni	VEN				ente	debole (5m/s)	m	edio X forte	Misu	rato: rafficato	
meteo	PIO	GGIA	\	ass	ente	debole medio	L	forte	Misur	ato	
	temp	perati	ura (°	°C ap	prox)		Note:			
natura terreno appoggio											
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessu	uno	X dis	persi	addensati	altı	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo	ri, pompe,		
automobili		X				3	ſ	strutture nelle vicii	nanze:	alberi, sondaggi, e	difici, ponti,
camion		Х				3		(descrizione, altezza, dist		strutture sotterran	ее,
pedoni	X							- muro di recinzione l	n=2.5 m c	dist=15 m	
altro											

note:


- raffiche di vento fanno oscillare gli alberi circostanti disturbando il segnale copertura: colluvium/detrito bedrock: Macigno

BACCHERETO - prova 4

Inizio registrazione [data ora]: 14/08/2012 16:32:32

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1640

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	OGETTO SESAME							
	Criteri per una cu [devono ess			[R]				
i R	$f_0 > 10 / L_w$	ere soudis	44.18		0.50	ok		
	$n_c(f_0) > 200$			>				
ii R		2 511-	72453 eccede	>	200	ok		
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} < f_{0} < f_$	170	ok					
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < f$		0 Pahiara (C	1	punti			
	[è stato escluso il criterio vC: alr		-	-	sfatti]			
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	,	no		
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no		
iii C	A ₀ > 2	<u> </u>	2.48	>	2	ok		
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.023	<	0.05	ok		
v C	$\sigma_f < \varepsilon(f_0)$		3.15240	<	2.20893	no		
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.399 < 1.58							
L _w larghezza della finestra [s]								
n _w								
	numero di clicli significativi [num]					82 72453		
f ₀	frequenza di picco H/V [Hz]					44.18		
f	frequenza							
$\sigma_{ m f}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 3.15		
$\varepsilon(f_0)$	valore soglia per condizioni di stabili	ità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	ella sotto		2.21		
A_0	ampiezza del picco H/V alla frequen					2.48		
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f						
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A							
f +	· · · · · · · · · · · · · · · · · · ·							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.39		
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)	A (6)						
	σ _{logH/V} (f) deviazione standard della curva log A _{H/V} (f)							
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀ 2.5	0.15 f ₀	0.10 f ₀	0.05 f ₀		
	$\theta(f_0)$ for $s_A(f_0)$							
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2							

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

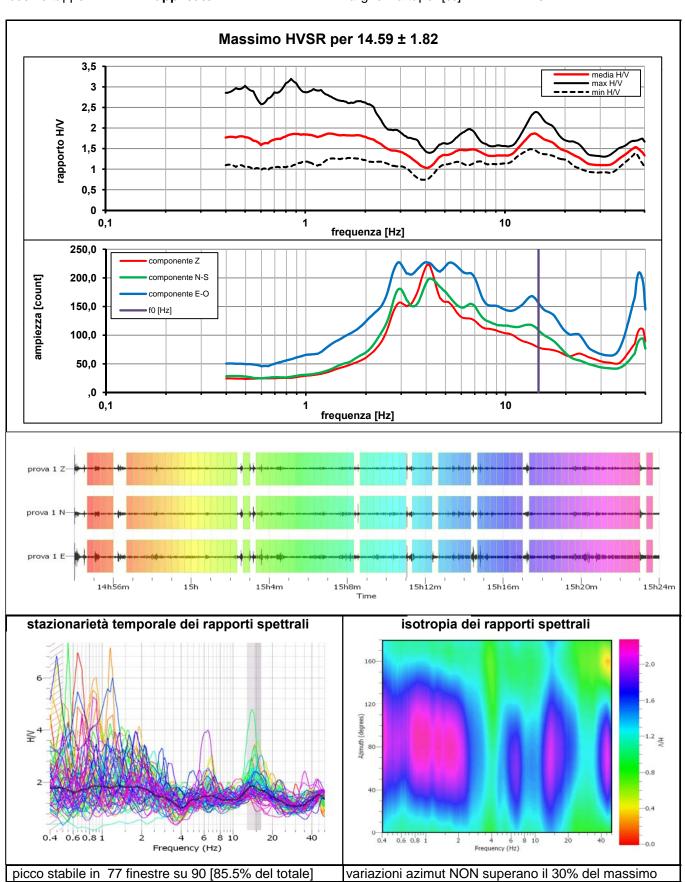
Valutazioni qualitative

profon. contrasto: < 5 m
[qualche metro]
contrasto: BASSO

BACCHERETO - prova 5

località:	BAC	CHE	RET	0		data: 14/08/2012			ora:		14:54:05
operatore:	Man	tovar	ni								
latitudine:	43,80497N					longitudine: 10,98626E			quota s.l.m.: 235		
nome stazione:	prov	a 5				orientamento strun	nen	to rispetto al Nord:	7	5°	
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	٧	elocimetri 4,5 Hz			
nome file:	MT_	2012	0814	1_145	405.	SAF					
gain:						freq.campion.[Hz]:		300	durata rec	. [mm:ss]:	30.00
	VEN	то		ass	ente	X debole (5m/s)	n	nedio forte	Misurat	to: rafficato	
condizioni meteo	PIO	3GIA)	ass	ente	debole med	0	forte	Misurat	0	
	temperatura (°C approx) Note:										
natura terreno appoggio	terra dura soffice X ghiaia sabbia roccia X erba X bassa alta asfalto cemento calcestruzzo pavimentato altro										
	X	suolo	asciu	tto	8	suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si	, tipologia			
densità edifici:		nessı	uno	X dis	persi	addensati	al	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]	$\overline{ brace}$	fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo	ri, pompe, co		
automobili	X							strutture nelle vicir	I .	alberi, sondaggi, e	difici, ponti,
camion	X							(descrizione, altezza, dist	tanza)	strutture sotterrane	ee,
pedoni	X							- casotto in lamiera h=	2.5 m dist= 4	4 m	
altro											

note:


- raffiche di vento fanno oscillare gli alberi circostanti disturbando il segnale copertura: colluvium/dwtrito bedrock: C. Caotico

BACCHERETO - prova 5

Inizio registrazione [data ora]: 14/08/2012 14:54:05

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1540

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	OGETTO SESAME							
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]							
i R	$f_0 > 10 / L_w$	ere soudis	14.60	>	0.50	ok		
ii R	$n_c(f_0) > 200$		22484		200	ok		
11 13		- 0 EU-	eccede	>	287	UK		
iii R	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < $		ok					
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < f$		0 R chiaro IC	1	punti			
	[è stato escluso il criterio vC: alr		_	-	sfatti]			
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		0.000	Hz	-	no		
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no		
iii C	A ₀ > 2	-	1.83	>	2	no		
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.080	<	0.05	no		
v C	$\sigma_f < \varepsilon(f_0)$		1.82485	<	0.73000	no		
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.275 < 1.58							
L _w larghezza della finestra [s]								
n _w	numero di finiestre utilizzate per l'an	alisi [num]				20 77		
	numero di clicli significativi [num]					22484		
f_0	frequenza di picco H/V [Hz]					14.60		
f	frequenza							
$\sigma_{ m f}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 1.82		
ε(f ₀)	valore soglia per condizioni di stabil	ità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	ella sotto		0.73		
A_0	ampiezza del picco H/V alla frequen		ń			1.83		
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f						
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$A_{H/V}(f^{-}) < A_0$	/2					
f ⁺	f^+ frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.27		
$\sigma_{A}(f)$								
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log		~ // \	·····				
$\Theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58		
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2							

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

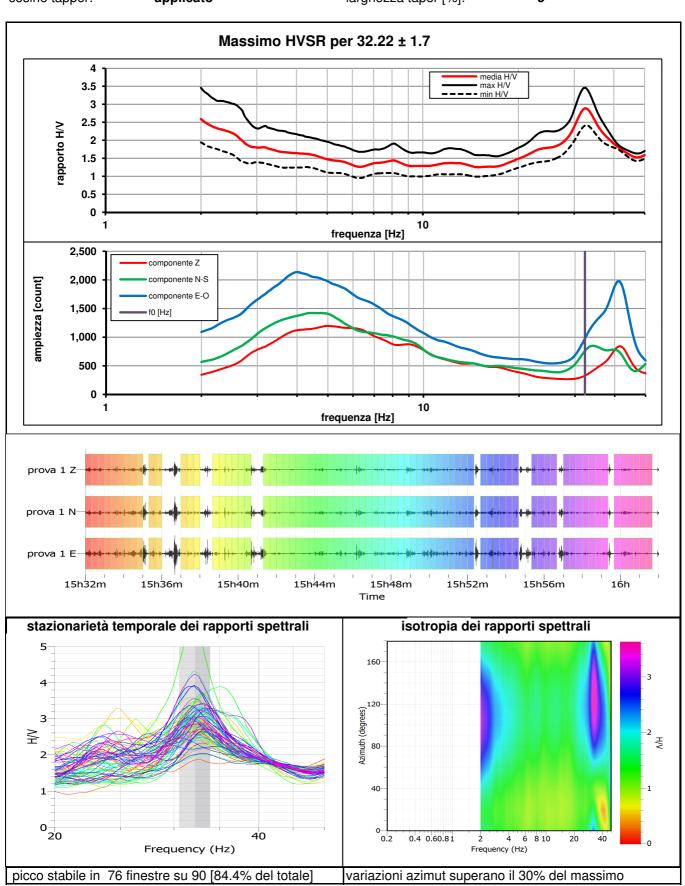
CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative				
profon. contrasto:	5-10 m			
[qual	che metro]			
contrasto:				

02 – CARMIGNANO

CARMIGNANO - prova 1

località:	CARMIGNANO					data: 09/08/2012			ora:		15:32:13
operatore:	Man	tovar	ni								
latitudine:	43,8	0633	N			longitudine:		11,02763E	quota s.l.m.:	138°	
nome stazione:	prov	⁄a 1				orientamento strume	ent	to rispetto al Nord:	320°		
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	0809	153	3213.	SAF					
gain:						freq.campion.[Hz]:		300	durata rec. [ı	mm:ss]:	30.00
condizioni	VEN	ТО		ass	ente	debole (5m/s) X	m	edio forte	Misurato _	_ raffiche	
meteo	PIO	GGIA)	ass	ente	debole medio		forte	Misurato _		
	temp	emperatura (°C approx) Note:									
natura terreno appoggio asfalto cemento calcestruzzo pavimentato altro							[alta				
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessı	uno [X dis	persi	addensati	alt	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo		i d'acqua, e	ecc.):
automobili				X		30		strutture nelle vicii	aibi	eri, sondaggi, ed	
camion		X				30		(descrizione, altezza, dis	lanza)	utture sotterrane	e,
pedoni	X							alberi H = 3-4 m di	st = 4-5 m		
altro											


copertura: colluvium/detrito bedrock: Marne di S.Polo

CARMIGNANO - prova 1

Inizio registrazione [data ora]: 09/08/2012 15:32:13

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1520

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	CRITERI PROGETTO SESAME								
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]									
i R	f ₀ > 10 / L _w 32.23 > 0.50								
ii R	$n_c(f_0) > 200$		48983	>	200	ok			
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5$		eccede	su	352	ok			
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f_{0}$		0		punti				
	Criteri per un p [è stato escluso il criterio vC: alı			-	efattil				
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		19.389	Hz	siattij	ok			
ii C									
	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}$ (f ⁺) <	A ₀ / 2	0.000	Hz		no			
iii C	A ₀ > 2		2.87	>	2	ok			
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	<u>%</u>	0.014	<	0.05	ok			
v C	$\sigma_f < \mathcal{E}(f_0)$		1.70480	<	1.61129	no			
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.196	<	1.58	ok			
L _w larghezza della finestra [s]									
n _w									
	numero di clicli significativi [num]					48983			
f_0	frequenza di picco H/V [Hz]					32.23			
f	frequenza								
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 1.7			
$\varepsilon(f_0)$	valore soglia per condizioni di stabil					1.61			
A_0	ampiezza del picco H/V alla frequer	ıza f _o	ń			2.87			
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f							
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$A_{H/V}(f^{-}) < A_0$	/2						
f ⁺	frequenza fra f_0 e $4f_0$ per la quale A_1	$H/V(f^+) < A_0$	/2						
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.19			
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)								
$\sigma_{logH/V}(f)$	deviazione standard della curva log	$A_{H/V}(f)$							
$\Theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58			
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log θ(f ₀) for $σ_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2								

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	ok
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 1

Valutazioni qualitative
profon. contrasto: < 5 m

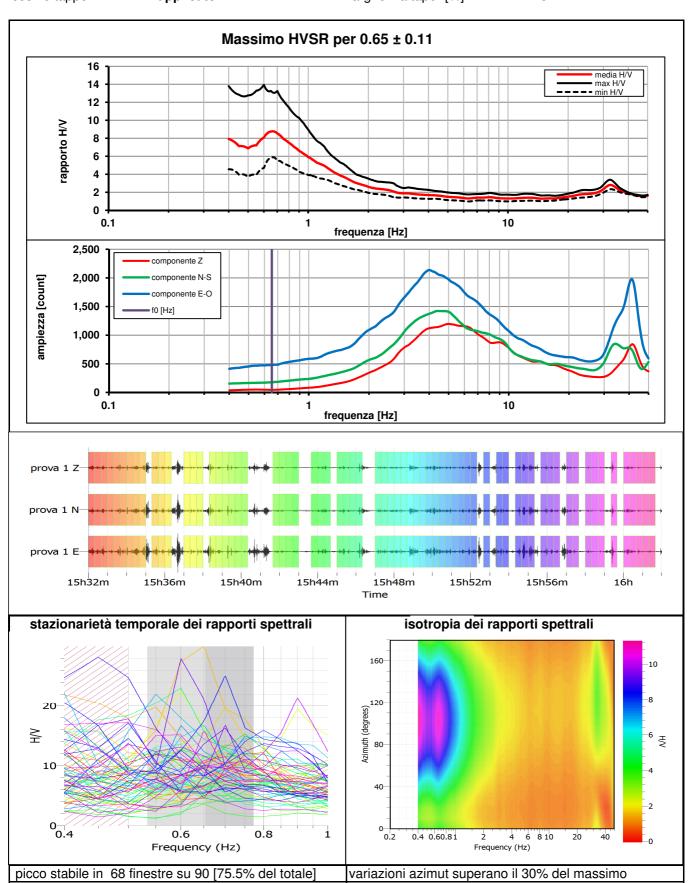
[qualche metro]

Elaborazione spettro completo

CARMIGNANO - prova 1

localită	à:	CARMIGNANO					data:		09/08/2012	ora:		15:32:13
operat	tore:	Man	itovar	ni								
latitudi	ine:	43,8	0633	N			longitudine:		11,02763E	quota s.l.m.:	138°	
nome	stazione:	prov	/a 1				orientamento strume	ent	to rispetto al Nord:	320°		
tipo sta	azione:	SAF	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome	file:	MT_	2012	20809	_153	3213.	SAF					
gain:							freq.campion.[Hz]:		300	durata rec. [n	nm:ss]:	30.00
		VEN	ITO		ass	ente	debole (5m/s) X	m	edio forte	Misurato _	raffiche _	
	ndizioni neteo	PIO	GGIA	\	ass	ente	debole medio		forte	Misurato _		
		temp	oerati	ura (ʻ	℃ ар	prox)		Note:			
natura terreno soffice							ghiaia sabbia		roccia vimentato altro	X erba	a X bas	
		X suolo asciutto suolo umido Note:										
ассор	piamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densit	tà edifici:		nessı	uno	X dis	spersi	addensati	alt	ro, tipologia			
transi	enti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo	ri, pompe, corsi	d'acqua, d	ecc.):
au	tomobili				X		30		strutture nelle vicii	albe	ri, sondaggi, e	difici, ponti,
cai	mion		X				30 (descrizione, altezza, distanza) str			laliza)	ture sotterrane	ee,
ре	doni	X							alberi H = 3-4 m di	st = 4-5 m		
altı	ro											
			<u> </u>									

copertura: colluvim/detrito bedrock: Marne di S.Polo


Elaborazione spettro completo

CARMIGNANO - prova 1

Inizio registrazione [data ora]: 09/08/2012 15:32:13

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1360

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

	DGETTO SESAME									
	Criteri per una cu			[R]						
· n	[devono essere soddisfatti tutti] i R									
	, ii									
ii R	$n_{c}(f_{0}) > 200$	1	889	>	200	ok				
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	eccede	su	245	ok					
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0		punti	<u> </u>				
	Criteri per un p [è stato escluso il criterio vC: ali				ofottil					
: 0	•				siallij					
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz		no				
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <	: A ₀ / 2	1.313	Hz	_	ok				
iii C	A ₀ > 2		8.76	>	2	ok				
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.081	<	0.05	no				
v C	$\sigma_f < \varepsilon(f_0)$		0.11963	<	0.09803	no				
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.491	<	2	ok				
L _w	L _w larghezza della finestra [s] 20									
	numero di finiestre utilizzate per l'ar	nalisi [num]				68				
	numero di clicli significativi [num]					889				
	frequenza di picco H/V [Hz]					0.65				
f	freguenza									
	deviazione standard della frequenza					± 0.11				
	valore soglia per condizioni di stabil					0.10				
A_0	ampiezza del picco H/V alla frequer	ıza f _o				8.76				
$A_{H/V}(f)$	ampiezza della curva H/V alla frequ	enza f								
f -	frequenza fra f ₀ /4 e f ₀ per la quale A	$A_{H/V}(f^{}) < A_0$	/2							
f ⁺	frequenza fra f _o e 4f _o per la quale A _l	$H/V(f^+) < A_0/V$	/2							
$\sigma_{A}(f_{0})$	deviazione standard di A _o					± 1.49				
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)									
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log	$A_{H/V}(f)$								
$\theta(f_0)$	valore soglia per la condizione di st	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	2.00				
[Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0				
[$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀				
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58				
The second secon	Log θ(f ₀) for $\sigma_{\text{logH/V}}(f_0)$ 0.48 0.4 0.3 0.25 0.2									

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	С
SOTTOCLASSE	

Valutazioni qualitative

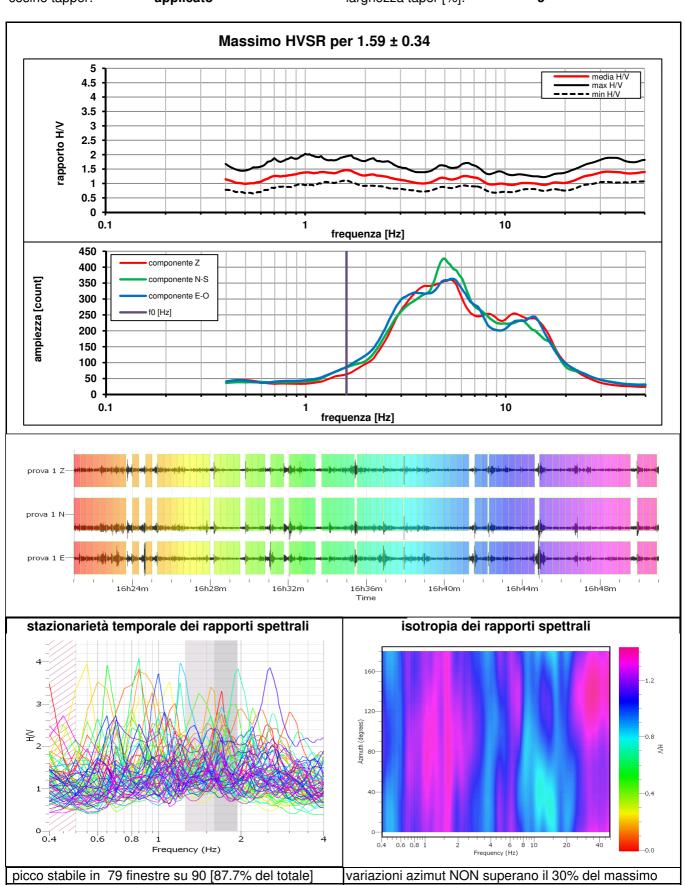
profon. contrasto: > 100 m
[centinaia di metri]
contrasto: ALTO

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

CARMIGNANO - prova 2

località:	CAF	RMIG	NAN	0		data:		09/08/2012	ora:		16:21:26
operatore:	Man	itovar	ni								
latitudine:	43,8	1265	N			longitudine:		11,02344E	quota s.l.m.:	170°	
nome stazione	: prov	va 2				orientamento strume	en	to rispetto al Nord:	180°		
tipo stazione:	SAF	RA SI	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	20809	_162	2126.	SAF					
gain:						freq.campion.[Hz]:		300	durata rec. [n	nm:ss]:	30.00
	VEN	ITO		ass	ente	debole (5m/s) X	m	edio forte	Misurato _	raffiche _	
condizioni meteo	PIO	GGIA	\	ass	ente	debole medio		forte	Misurato _		
	tem	perat	ura (ʻ	℃ ар	prox)	Note:				
natura terreno appoggio X terra X dura soffice cemento						ghiaia sabbia	·	roccia	X erba	a X bas	
	X	suolo	asciu	tto		suolo umido					
accoppiament	o artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici	:	ness	uno	X dis	spersi	addensati	alt	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo		•	,
automobili		X				3		strutture nelle vici	albe	ri, sondaggi, e	difici, ponti,
camion	X					3		(descrizione, altezza, distanza) strutture sotterranee,			ee,
pedoni		X				3		- alberi H=3-4 m di	ist = 3 m		
altro											

note:


- le raffiche di vento, agendo sugli alberi, creano un po' di disturbo sulla registrazione (ampiezza segnale registrato) copertura: colluvium/detrito bedrock: Marne di S.Polo

CARMIGNANO - prova 2

Inizio registrazione [data ora]: 09/08/2012 16:21:26

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1580

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	OGETTO SESAME									
	Criteri per una cu			[R]						
	[devono essere soddisfatti tutti] i R									
	·									
ii R	$n_{c}(f_{0}) > 200$		2526 eccede	>	200	ok				
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 < f_0 $	287	ok							
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < f_0 < $		0	su	punti					
	Criteri per un p [è stato escluso il criterio vC: aln			_	efattil					
i C			0.000	Hz	Siailij	no				
	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$			Hz		no				
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) < A_{H/V}(f^+)$	A ₀ / 2	0.000		0	no				
iii C	A ₀ > 2		1.46	>	2	no				
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^{\circ}$	%	0.373	<	0.05	no				
v C	$\sigma_f < \varepsilon(f_0)$		0.34588	<	0.15989	no				
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.326	<	1.78	ok				
L _w	L _w larghezza della finestra [s] 20									
n _w	n _w numero di finiestre utilizzate per l'analisi [num] 79									
	numero di clicli significativi [num]					2526				
	frequenza di picco H/V [Hz]					1.60				
f	frequenza									
σ_{f}	deviazione standard della frequenza					± 0.34				
$\varepsilon(f_0)$	valore soglia per condizioni di stabili					0.16				
A_0	ampiezza del picco H/V alla frequen	za f _o				1.46				
$A_{H/V}(f)$	ampiezza della curva H/V alla freque	enza f								
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale A_i									
f ⁺	frequenza fra f_0 e $4f_0$ per la quale A_H	$_{/V}(f^+) < A_0/$	′2							
$\sigma_A(f_0)$	deviazione standard di A ₀					± 1.32				
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)									
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log									
$\theta(f_0)$	valore soglia per la condizione di sta	bilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.78				
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0				
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀				
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58				
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2				

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

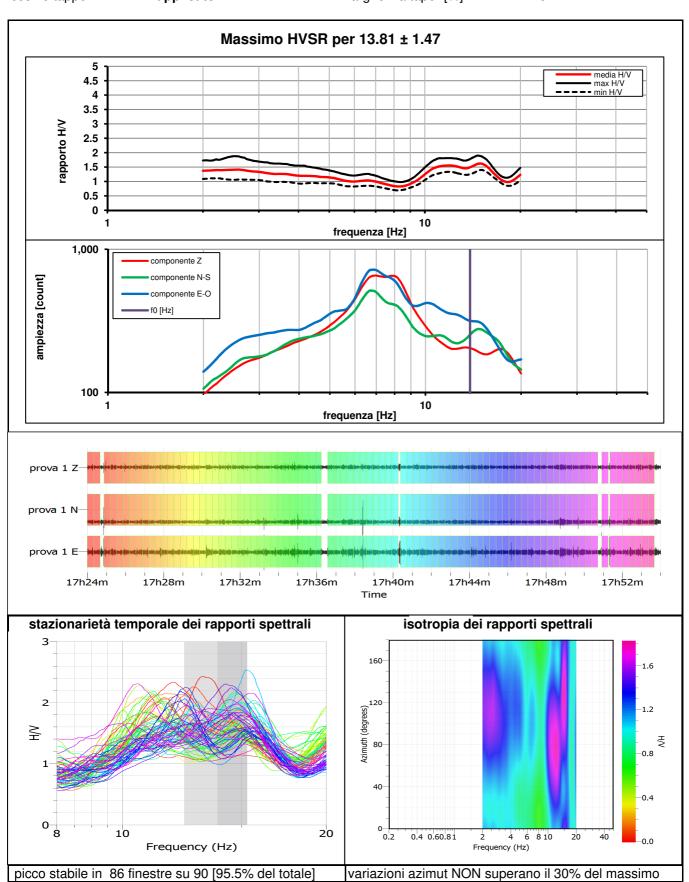
Valutazioni qualitative

profon. contrasto: 50-100 m
[decine di metri]
contrasto:

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

CARMIGNANO - prova 3

località:	CARMIGNANO					data: 09/08/2012			ora:		17:24:51
operatore:	Mantovani										
latitudine:	43,80788N					longitudine: 11,01060E			quota s.l.m.	.: 284,0	
nome stazione:	prov	/a 3				orientamento strume	ent	to rispetto al Nord:	135°		
tipo stazione:	SAR	RA SF	R04H	IS		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	20809	172	2451.	SAF					
gain:						freq.campion.[Hz]:		300	durata rec.	[mm:ss]:	30.00
	VEN	ITO		ass	ente	X debole (5m/s)	m	edio forte	Misurato)	
condizioni meteo	PIO	GGIA)	ass	ente	debole medio	forte	Misurato			
	temp	emperatura (°C approx) Note:									
natura terreno appoggio	X	X terra X dura soffice ghiaia sabbia roccia x erba x bassa alta alta asfalto cemento calcestruzzo pavimentato altro									
	X	X suolo asciutto suolo umido Note:									
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessı	uno	X dis	spersi	addensati	alt	ro, tipologia			
transienti:	moderati molto densi molto densi							fonti di rumore monocromatico (fabbriche,cantieri lavori, pompe, corsi d'acqua, ecc.): no X si, tipologia: _ pompe piscina			
automobili		X				4		strutture nelle vicir	a	lberi, sondaggi, e	difici, ponti,
camion	X					4		(descrizione, altezza, dist	tanza) st	trutture sotterrane	ee,
pedoni		X				- alberi (olivi) H = 3-4 m dist = 4-5					
altro											


copertura: colluvium/detrito bedrock: Macigno Londa

CARMIGNANO - prova 3

Inizio registrazione [data ora]: 09/08/2012 17:24:51

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1720

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]											
i D	i R $f_0 > 10 / L_w$ 13.81 > 0.50 ok										
ii R		200	ok								
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		eccede	su	462	ok					
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0	1	punti						
Criteri per un picco HVSR chiaro [C] [è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]											
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) \mid$		0.000	Hz		no					
ii C	esiste f in [f ₀ , 4f ₀] A _{H/V} (f i) <		0.000	Hz		no					
iii C	A ₀ > 2		1.48	>	2	no					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	5%	0.090	<	0.05	no					
v C	$\sigma_f < \mathcal{E}(f_0)$		1.47935	<	0.69068	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.161	<	1.58	ok					
L _w	larghezza della finestra [s] 20										
	numero di finiestre utilizzate per l'analisi [num] 86 fo numero di clicli significativi [num] 2375										
f _o	numero di clicli significativi [num] 2 frequenza di picco H/V [Hz] 1										
f	frequenza										
σ_{f}	deviazione standard della frequenz					± 1.47					
$\varepsilon(f_0)$	valore soglia per condizioni di stabi					0.69					
A_0	ampiezza del picco H/V alla freque	nza f _o				1.48					
$A_{H/V}(f)$	ampiezza della curva H/V alla frequ	ıenza f									
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale A	$A_{H/V}(f^{}) < A_0$	/2								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A	$_{H/V}(f^+) < A_0$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.16					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)										
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log										
$\Theta(f_0)$	valore soglia per la condizione di st	abilita $\sigma_A(t)$	< θ(t ₀) - vec		tto	1.58					
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀ 2.5	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$										
	Log θ(f ₀) for $\sigma_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2										

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

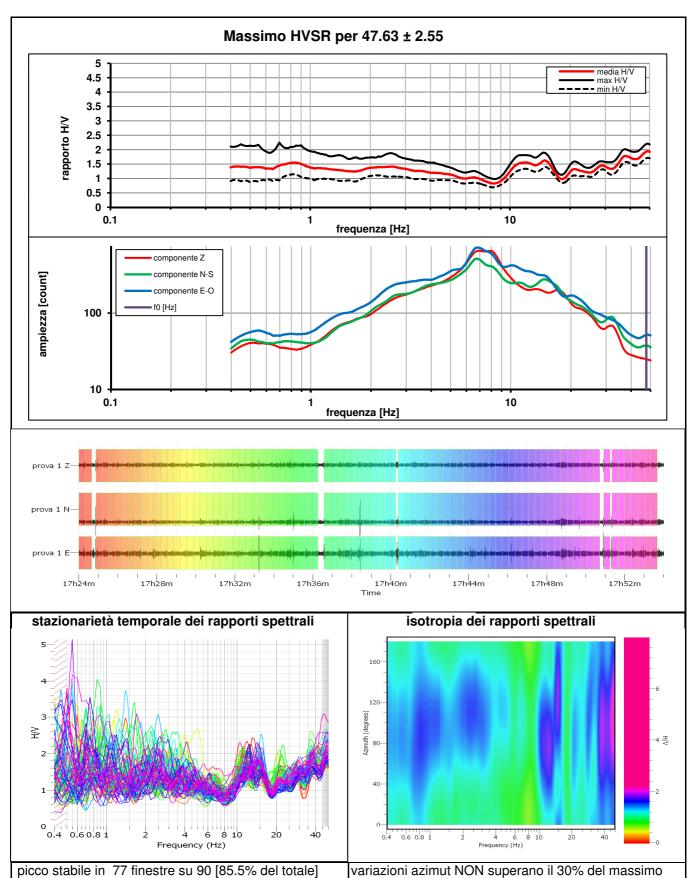
1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative
profon. contrasto: 5-10 m
[qualche metro]
contrasto:

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

copertura: colluvium/detrito bedrock: Macigno Londa


Elaborazione spettro completo

CARMIGNANO - prova 3

Inizio registrazione [data ora]: 09/08/2012 17:24:51

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1540

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R]											
	[devono essere soddisfatti tutti] i R f ₀ > 10 / L _w 47.63 > 0.50 ok										
i R	$f_0 > 10 / L_w$ 47.63 > 0.50										
ii R	$n_c(f_0) > 200$ 73351 > 200										
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$	> 0.5Hz	eccede	CII	154	ok					
liii n	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f_{0}$	0	su	punti	OK						
	Criteri per un picco HVSR chiaro [C]										
	[è stato escluso il criterio vC: al		5 devono es	ssere soddis	statti]						
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$: A ₀ / 2	0.000	Hz		no					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}$ (f ⁺) <	: A ₀ / 2	0.000	Hz		no					
iii C	A ₀ > 2		1.92	>	2	no					
iv C	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5$	5%	0.030	<	0.05	ok					
v C	$\sigma_f < \mathcal{E}(f_0) \qquad \qquad 2.55745 \qquad < \qquad 2.38154$										
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.134	<	1.58	ok					
L _w	larghezza della finestra [s]										
n _w	larghezza della finestra [s] numero di finiestre utilizzate per l'analisi [num]										
	f ₀ numero di clicli significativi [num]										
f_0	frequenza di picco H/V [Hz]										
f	frequenza										
$\sigma_{ m f}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 2.55					
$\varepsilon(f_0)$	valore soglia per condizioni di stabil					2.38					
A_0	ampiezza del picco H/V alla frequer					1.92					
$A_{H/V}(f)$	ampiezza della curva H/V alla frequ	enza f									
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale A	$A_{H/V}(f^{-}) < A_0$	/2								
f ⁺	frequenza fra f_0 e $4f_0$ per la quale A	$_{H/V}(f^+) < A_0$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.13					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)										
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log										
$\Theta(f_0)$	valore soglia per la condizione di st	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.58					
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58					
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements, processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

ULTERIORI CRITERI Del.GRT n.261/2011

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

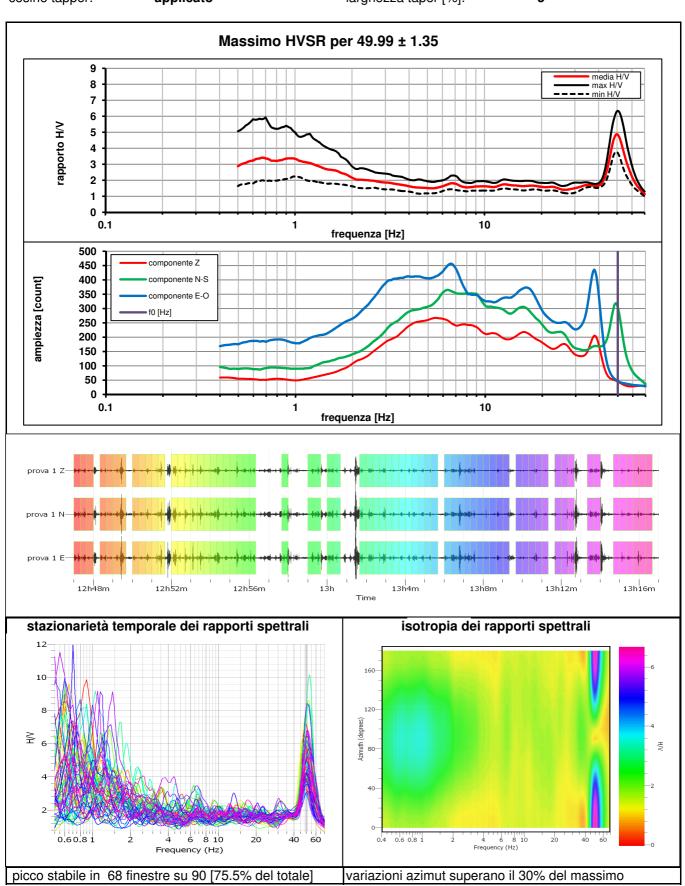
CLASSE	В
SOTTOCLASSE	Tipo 2

valutazioni qualitative
profon. contrasto: < 5 m
[qualche metro]
contrasto:

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

CARMIGNANO - prova 4

località:	C	CARMIGNANO					data: 12/08/2012			ora:		12:47:04
operatore:	F	Peruzzi										
latitudine:	4	3,8	0709	N			longitudine: 11,01255E			quota s.l.	m.: 222	
nome stazione	e: p	prova 4					orientamento strume	to rispetto al Nord:	172°			
tipo stazione:	S	SARA SR04HS					tipo sensori:	elocimetri 4,5 Hz				
nome file:	N	/IT_	2012	0812	2_124	1704.	SAF					
gain:							freq.campion.[Hz]:		300	durata re	c. [mm:ss]:	30.00
		/EN	то)	ass	ente	debole (5m/s)	debole (5m/s) medio forte			ato	
condizioni meteo	i F	200	GGIA)	ass	ente	debole medio		forte	Misur	ato	
	te	emperatura (°C approx) Note:										
natura terrei appoggio		X terra X dura soffice ghiaia sabbia roccia x erba x bassa alta alta asfalto cemento calcestruzzo pavimentato altro										
		X suolo asciutto Suolo umido Note:										
accoppiamer	nto ai	rtifi	ciale	al sı	uolo:	:	X no	si,	tipologia			
densità edific	ci:		nessu	uno [X dis	spersi	addensati	alt	ro, tipologia			
transienti:		nessuno	pochi	moderati	molti	molto densi				onocromatico vori, pompe, corsi d'acqua, ecc.): pologia: cabina metano a circa 10 m		
automobili	i			X			10 - 20		strutture nelle vicir	nanze:	alberi, sondaggi, e	difici, ponti,
camion		X							(descrizione, altezza, dist	, , , , , , , , , , , , , , , , , , ,	strutture sotterrand	ee,
pedoni		X					- alberi h= 3 - 4 m dist 2 - 3 m					
altro												


copertura: colluvium/detrito bedrock: Macigno Londa

CARMIGNANO - prova 4

Inizio registrazione [data ora]: 12/08/2012 12:47:04

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1360

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	ROGETTO SESAME							
	Criteri per una cu			[R]				
: D	[devono essere soddisfatti tutti] i R							
				>				
ii R	$n_c(f_0) > 200$		67997 eccede	>	200	ok		
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	209	ok					
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		0		punti			
	Criteri per un p [è stato escluso il criterio vC: ali	-		-	efattil			
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		43.753	Hz	Jau	ok		
ii C	esiste f in $[f_0, 4f_0] \mid A_{H/V}(f^+) <$		59.164	Hz		ok		
iii C	$A_0 > 2$	· A ₀ / Z	4.88	>	2	ok		
iv C	·		0.010		0.05	ok		
v C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$ $\sigma_f < \mathcal{E}(f_0)$	170	1.35160	<	2.49989	ok		
vi C								
VIC	C $\sigma_{A}(f_0) < \theta(f_0)$ 1.294 < 1.58 ok							
L _w larghezza della finestra [s]								
n _w numero di finiestre utilizzate per l'analisi [num]								
$n_c = L_w n_w t_0$	n _w f _o numero di clicli significativi [num]							
† ₀	frequenza di picco H/V [Hz]					50.00		
f	frequenza					1.0=		
$\sigma_{\rm f}$	deviazione standard della frequenza					± 1.35		
_	valore soglia per condizioni di stabil	lità $\sigma_f < \varepsilon(f_0)$) - vedi tabe	ella sotto				
A ₀	ampiezza del picco H/V alla frequer					4.88		
A _{H/V} (f)	ampiezza della curva H/V alla frequ		′^					
f -	frequenza fra f ₀ /4 e f ₀ per la quale A							
f +	frequenza fra f_0 e $4f_0$ per la quale A deviazione standard di A_0	$H/V(I) < H_0/V$	/2			+120		
$\sigma_{A}(f_{0})$	deviazione standard di A _{H/V} (f)					± 1.29		
$\sigma_{A}(f)$	deviazione standard della curva log	ι Δ / f)						
$\sigma_{\text{logH/V}}(f)$ $\theta(f_0)$	valore soglia per la condizione di st		< θ(f ₀) - vec	tabella so	tto	1.58		
<u> </u>								
	Freq.range [Hz] $\epsilon(f_0)$ [Hz]	< 0.2 0.25 f ₀	0.2 - 0.5 0.2 f ₀	0.5 – 1.0 0.15 f ₀	1.0 – 2.0 0.10 f ₀	> 2.0 0.05 f ₀		
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58		
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2		
	209 0(10) 101 010gm/V(10)				•			

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	ok
6. Durata	ok

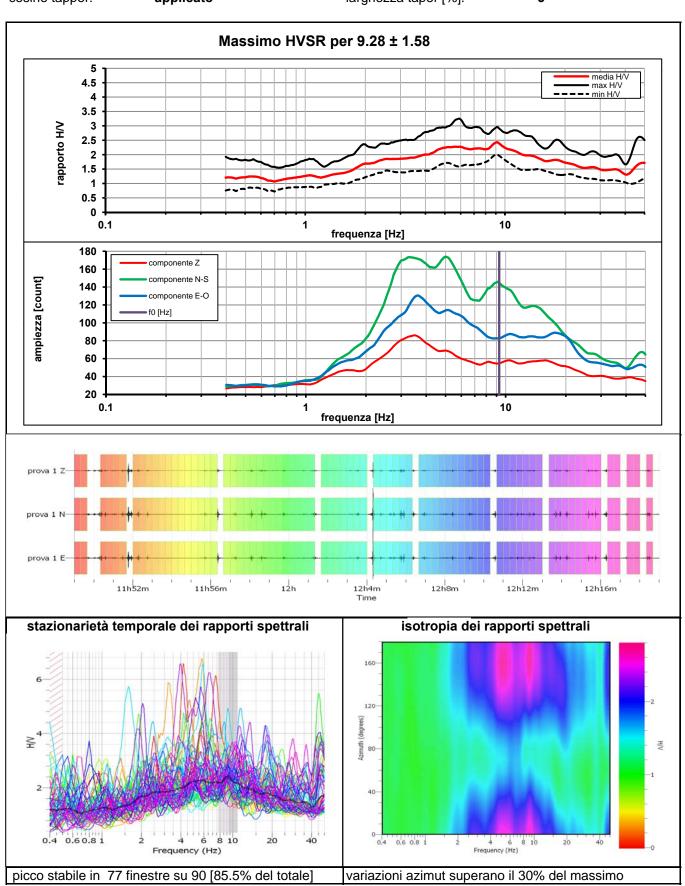
CLASSE	С	
SOTTOCLASSE		

valutazioni qualitative
profon. contrasto: < 5 m
[qualche metro]
contrasto: ALTO

CARMIGNANO - prova 5

località:	CAF	CARMIGNANO				data: 14/08/2012 d			ora:		11:49:47
operatore:	Man	itovar	ni								
latitudine:	43,8	0014	N			longitudine: 11,00319E			quota s.l.m	n.: 225	
nome stazione:	prov	/a 5				orientamento stru	men	to rispetto al Nord:	30°		
tipo stazione:	SAF	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	0814	<u> </u> 114	1947.	SAF					
gain:						freq.campion.[Hz]]:	300	durata rec.	. [mm:ss]:	30.00
condizioni	VEN	ITO		ass	ente	X debole (5m/s)	m	nedio forte	Misurat	to	_
meteo	PIO	GGIA	\	ass	ente	debole me	dio	forte	Misurat	0	
	tem	temperatura (°C approx) Note:									
natura terrenc appoggio	terra dura soffice X ghiaia sabbia roccia erba alta										
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	o artifi	ciale	al sı	uolo:		X no	si	, tipologia			
densità edifici:		nessi	uno	X dis	persi	addensati	al	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore m (fabbriche,cantieri la no X si, ti		orsi d'acqua, e	ecc.):
automobili				X		2		strutture nelle vi	1 1	alberi, sondaggi, e	difici, ponti,
camion		X				2		(descrizione, altezza, d		strutture sotterrane	ee,
pedoni	Х										
altro											
	- [

note:


- traffico intenso a circa 2 m dallo strumento copertura: colluvium/detrito bedrock: Macigno Londa

CARMIGNANO - prova 5

Inizio registrazione [data ora]: 14/08/2012 11:49:47

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1540

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	OGETTO SESAME								
	Criteri per una cu [devono ess			[R]					
i R	f ₀ > 10 / L _w	ere soudisi	9.28		0.50	ok			
	$n_c(f_0) > 200$			>					
ii R		2 511-	14297	>	200	ok			
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ eccede su punti								
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5f_0 < f < 2f_0$ if $f_0 < 0.5f_0 < f < 0.5f_0$			1	punti				
	[è stato escluso il criterio vC: alr				sfatti]				
i C	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		0.000	Hz	,	no			
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no			
iii C	$A_0 > 2$	ŭ	2.40	>	2	ok			
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.017	<	0.05	ok			
v C	$\sigma_f < \varepsilon(f_0)$		1.58323	<	0.46420	no			
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.217	<	1.58	ok			
I	L _w larghezza della finestra [s] 20								
n _w numero di finiestre utilizzate per l'analisi [num]									
	numero di clicli significativi [num]	ano. []				77 14297			
f_0	frequenza di picco H/V [Hz]					9.28			
f	frequenza								
σ_{f}	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 1.58			
$\varepsilon(f_0)$	valore soglia per condizioni di stabili	tà $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	lla sotto		0.46			
A_0	ampiezza del picco H/V alla frequen		ń			2.40			
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f							
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2						
f ⁺	frequenza fra ${\rm f_0}$ e ${\rm 4f_0}$ per la quale ${\rm A_H}$	$_{I/V}(f^+) < A_{0/V}$	/2						
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.21			
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)								
$\sigma_{logH/V}(f)$	deviazione standard della curva log								
$\theta(f_0)$	valore soglia per la condizione di sta	bilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.58			
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2			

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

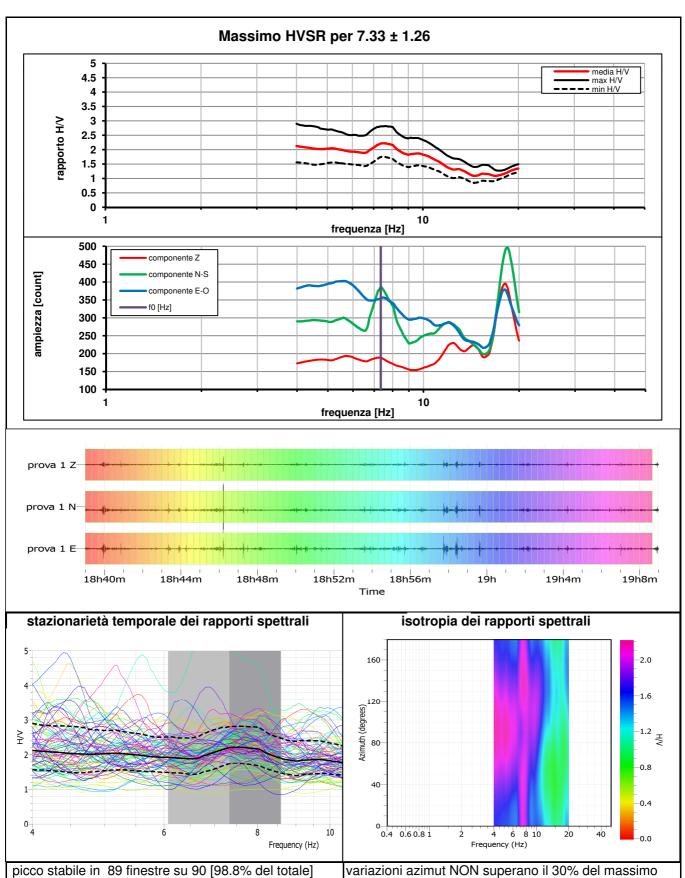
CLASSE	С	
SOTTOCLASSE		

contrasto:	BASSO
	[qualche metro]
profon. contrast	o: 5-10 m

CARMIGNANO - prova 6

località:	CAF	CARMIGNANO				data: 09/08/2012		ora:		18:39:55	
operatore:	Man	tovar	ni								
latitudine:	43,7	9489	N			longitudine:		11,01573E	quota s.l.n	n.: 226,0	
nome stazione	: prov	/a 6				orientamento strume	ent	to rispetto al Nord:	0°		
tipo stazione:	SAF	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	0809	_183	1955	SAF					
gain:						freq.campion.[Hz]:		300	durata rec	. [mm:ss]:	30.00
	VEN	ITO		ass	ente	debole (5m/s) X	m	edio forte	Misura	to _ raffiche _	
condizioni meteo	PIO	GGIA)	ass	ente	debole medio		forte	Misura	to	
	temp	oerati	ura (ʻ	℃ ар	prox)		Note:			
natura terren appoggio	X terra X dura ghiaia sabbia roccia X erba X bassa alta										
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamen	to artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edific	i:	nessı	uno [X dis	persi	addensati	alt	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipol	ri, pompe, co		ecc.):
automobili		X			_	20		strutture nelle vicir		- alberi, sondaggi, e	edifici, ponti,
camion	Х					20		(descrizione, altezza, dist	tanza)	strutture sotterran	ee,
pedoni	Х					20					
altro											
20 1 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Service and Market										

note: - presenza di traliccio MT a circa 30 m


copertura: colluvium/detrito bedrock: F. M.Morello

CARMIGNANO - prova 6

Inizio registrazione [data ora]: 09/08/2012 18:39:55

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1780

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	CRITERI PROGETTO SESAME								
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]									
i R	$f_0 > 10 / L_w$	sere soddis	i i		0.50	ol.			
	* "		7.34	>	0.50	ok			
ii R	$n_c(f_0) > 200$		13057	>	200	ok			
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$	eccede	su	807	ok				
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0	1	punti				
	Criteri per un ¡ [è stato escluso il criterio vC: al		-	-	sfattil				
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	,	no			
ii C	esiste f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < f^+$		30.973	Hz		ok			
iii C	$A_0 > 2$		2.21	>	2	ok			
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	5%	0.042	<	0.05	ok			
v C	$\sigma_f < \mathcal{E}(f_0)$		1.26048	<	0.36678	no			
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.267	<	1.58	ok			
L _w	laughara della finantia [a]								
		nalisi [num]				89			
	numero di finiestre utilizzate per l'ai numero di clicli significativi [num]					13057			
f_0	frequenza di picco H/V [Hz]					7.34			
f	frequenza								
$\sigma_{\scriptscriptstyle \mathrm{f}}$	deviazione standard della frequenz					± 1.26			
$\varepsilon(f_0)$	valore soglia per condizioni di stabi			ella sotto		0.37			
A_0	ampiezza del picco H/V alla freque	nza f _o	ń			2.21			
$A_{H/V}(f)$	ampiezza della curva H/V alla frequ	ıenza f							
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale A	$A_{H/V}(f^{\bar{i}}) < A_0$	/2						
f +	frequenza fra f_0 e $4f_0$ per la quale A	$_{H/V}(f^+) < A_0$	/2						
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.26			
$\sigma_{A}(f)$									
$\sigma_{\text{logH/V}}(\text{f})$									
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58								
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log $\Theta(\mathfrak{I}_0)$ for $\sigma_{\text{logH/V}}(\mathfrak{I}_0)$	Log θ(f ₀) for $σ_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2							

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

Valutazioni qualitative

profon. contrasto: 10-20 m
[decine di metri]
contrasto: BASSO

copertura: colluvium/detrito bedrock: F. M.Morello

Elaborazione spettro completo

CARMIGNANO - prova 6

Inizio registrazione [data ora]: 09/08/2012 18:39:55

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1560

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	OGETTO SESAME								
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]								
: D	1	ere soaaisi	,		0.50	alı			
i R	f ₀ > 10 / L _w		1.90	>	0.50	ok			
ii R	$n_c(f_0) > 200$		2962	>	200	ok			
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 > 0.5f_0 > 0.5f_0 > 0.5f_0 > 0.5f_0 > $		eccede	su	287	ok			
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f_0$		0		punti				
	Criteri per un p [è stato escluso il criterio vC: alı		_	_	sfattil				
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	Jiattij	no			
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no			
iii C	$A_0 > 2$		2.50	>	2	ok			
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.102		0.05	no			
v C	$\sigma_f < \mathcal{E}(f_0)$	7,0	0.41518	<	0.18988	no			
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.370 < 1.78								
	ACO 100								
L _w larghezza della finestra [s]									
n _w numero di finiestre utilizzate per l'analisi [num]									
	numero di clicli significativi [num]					2962			
t ₀	frequenza di picco H/V [Hz]					1.90			
T 	frequenza	di niana d	: LIA/ [LI=1			. 0.44			
$\sigma_{\rm f}$	deviazione standard della frequenza								
$\varepsilon(f_0)$	valore soglia per condizioni di stabil ampiezza del picco H/V alla frequer) - vedi tabe	ella sotto		0.19			
Α ₀	ampiezza della curva H/V alla freque					2.50			
A _{H/V} (f)	frequenza fra $f_0/4$ e f_0 per la quale A		/2						
f +	frequenza fra f_0 e $4f_0$ per la quale A_1								
$\sigma_{A}(f_0)$	deviazione standard di A ₀	4/V(1) < \(\) 0/				+ 1 37			
$\sigma_{A}(f)$	deviazione standard di A_0 ± 1.37 deviazione standard di $A_{H/V}(f)$								
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)							
$\theta(f_0)$	valore soglia per la condizione di sta		< θ(f ₀) - vec	di tabella so	tto	1.78			
(0/	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2			
1									

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

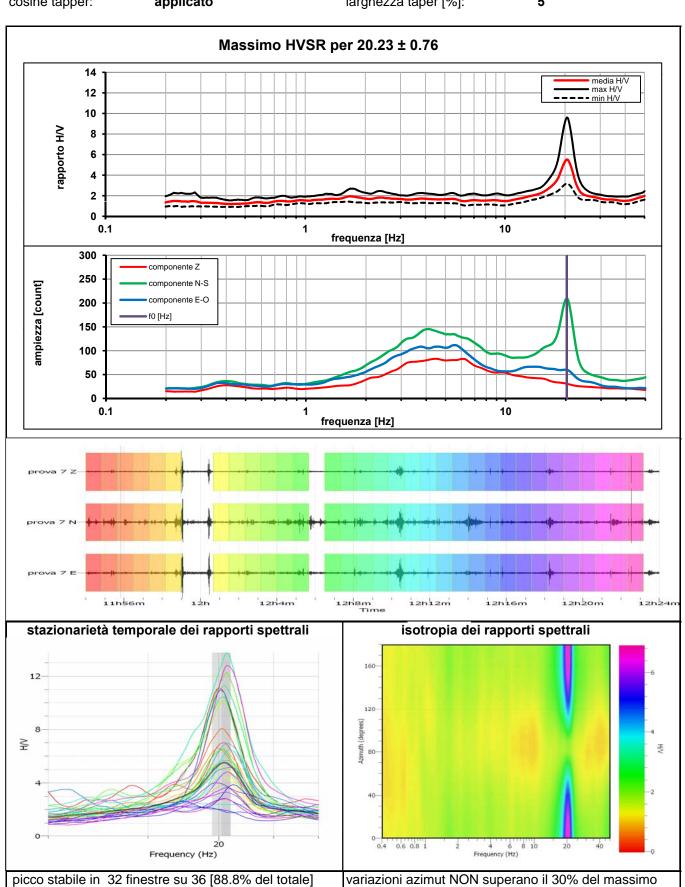
profon. contrasto: 50-100 m
[decine di metri]
contrasto: BASSO

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

CARMIGNANO - prova 7

località:	(CARMIGNANO				data: 12/08/2012			ora:		11:54:33	
operatore:		Peru	ızzi									
latitudine:	•	43,8	0427	N			longitudine: 11,01472E			quota s.l.m.	.: 207	
nome stazior	ne:	prova 7					orientamento st	rumen	to rispetto al Nord	l: 203°		
tipo stazione	: ;	SAR	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz	:		
nome file:	ı	MT_	2012	0812	_115	433.	SAF					
gain:							freq.campion.[H	lz]:	300	durata rec.	[mm:ss]:	30.00
condizior	ni	VEN			ass		debole (5m/s)	nedio forte	Misurato)	_	
meteo		PIO	GGIA	X	ass	ente	debole medio forte			Misurato		
	1	temp	emperatura (°C approx) Note:									
natura terre		X terra X dura soffice ghiaia sabbia roccia erba erba alta alta alta altro altro										
		X suolo asciutto Suolo umido Note:										
accoppiame	nto a	rtifi	ciale	al sı	olo:		X no	si	tipologia			
densità edifi	ici:	X	nessu	uno	dis	persi	addensati	al	tro, tipologia			
transienti:		nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore r (fabbriche,cantieri l X no si,		rsi d'acqua, e	-
automobi	li		X			_	30		strutture nelle v	l ai	lberi, sondaggi, ed	difici, ponti,
camion		X							(descrizione, altezza,		trutture sotterrane	е,
pedoni		X										
altro												
	- PA 1 VA 14			JSY 7 Wh	6 12 2		And Lucione.					

note:


copertura: colluvium/detrito bedrock: C. Caotico

CARMIGNANO - prova 7

Inizio registrazione [data ora]: 12/08/2012 11:54:33

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1600

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 50

CRITERI PR	OGETTO SESAME							
	Criteri per una cu			[R]				
	[devono ess	ere soaais			0.00			
i R	f ₀ > 10 / L _w		20.23	>	0.20	ok ok		
ii R	$n_c(f_0) > 200$ 32374 > 200							
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0$	eccede	su	251	ok			
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f < 2f_{0} < f_{0} < f_{$		0		punti	.		
	Criteri per un p		_	-	of o 44:1			
: 0	[è stato escluso il criterio vC: ali				siattij	ale		
iC	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		16.554	Hz		ok		
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	23.191	Hz		ok		
iii C	A ₀ > 2		5.47	>	2	ok		
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.009	<	0.05	ok		
v C	$\sigma_f < \varepsilon(f_0) \qquad \qquad 0.76185 \qquad < \qquad 1.01170$							
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.741 < 1.58							
L _w larghezza della finestra [s]								
n _w numero di finiestre utilizzate per l'analisi [num]								
$n_c = L_w n_w f_0$ numero di clicli significativi [num]								
f ₀	frequenza di picco H/V [Hz]					20.23		
f	frequenza							
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.76		
ε(f ₀)	valore soglia per condizioni di stabil	ità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe			1.01		
A_0	ampiezza del picco H/V alla frequer					5.47		
A _{H/∨} (f)	ampiezza della curva H/V alla frequ	enza f						
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale A	$A_{H/V}(f^{}) < A_0$	/2					
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.74		
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)							
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log A _{H/V} (f)							
$\theta(f_0)$	valore soglia per la condizione di sta	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.58		
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58		
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2		

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

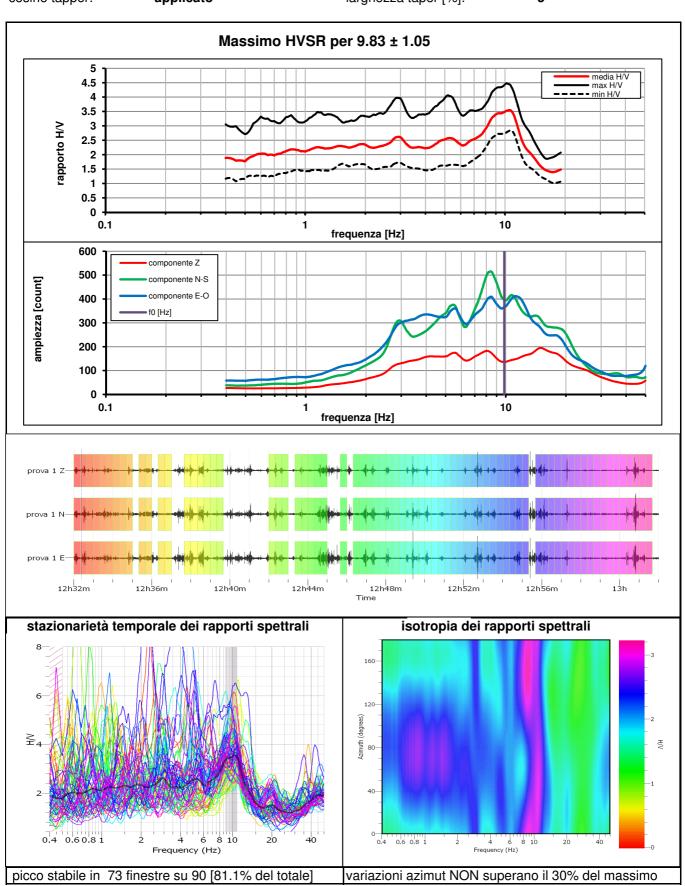
CLASSE	Α
SOTTOCLASSE	Tipo 1

[0	qualche metro]
contrasto:	ALTO

CARMIGNANO - prova 8

loca	lità:	CARMIGNANO					data: 14/08/2012		ora:		12:32:19	
ope	ratore:	Man	tovar	ni								
latitu	udine:	43,8	0073	N			longitudine:		11,00447E	quota s.l.	m.: 220	
nom	ne stazione:	prova 8					orientamento strume	ent	o rispetto al Nord:	1	175°	
tipo	stazione:	SARA SR04HS					tipo sensori:	ve	elocimetri 4,5 Hz			
nom	ne file:	MT_	2012	20814	1_123	3219.	SAF					
gain	1:						freq.campion.[Hz]:		300	durata re	c. [mm:ss]:	30.00
		VEN	ITO		ass	ente	X debole (5m/s)	m	edio forte	Misur	ato	
condizioni ploggia x assente				ente	debole medio		forte	Misura	ato			
		temp	emperatura (°C approx) Note:									
natura terreno appoggio X terra X soffice asfalto cemento					soffic	-	ghiaia sabbia roccia X erba X bassa alta calcestruzzo pavimentato altro					
		X	X suolo asciutto Suolo umido Note:									
acc	oppiamento	artifi	ciale	al sı	uolo		X no	si,	tipologia			
den	sità edifici:		nessı	uno	X dis	spersi	addensati	alt	ro, tipologia			
transienti:		nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo		corsi d'acqua,	ecc.):
á	automobili				X		20		strutture nelle vicii	nanze:	alberi, sondaggi, e	edifici, ponti,
	camion		Х				20		(descrizione, altezza, dis	tanza)	strutture sotterrand	ee,
<u> </u>	oedoni	X										
a	altro											

note:


- traffico intenso a circa 20 m dallo strumento copertura: colluvium/detrito bedrock: C. Caotico

CARMIGNANO - prova 8

Inizio registrazione [data ora]: 14/08/2012 12:32:19

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1460

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	OGETTO SESAME								
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]								
: D	$f_0 > 10 / L_w$	sere sodais.	,		0.50	ok			
i R	·								
ii R	$n_c(f_0) > 200$	200	ok						
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 >$		eccede	su	280	ok			
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0		punti				
	Criteri per un p [è stato escluso il criterio vC: alı		-	_	sfattil				
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f_0$		0.000	Hz	παιιη	no			
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		14.579	Hz		ok			
iii C	$A_0 > 2$	•	3.47	>	2	ok			
iv C	$f_{\text{peak}}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5$	1%	0.087	<	0.05	no			
v C	$\sigma_f < \mathcal{E}(f_0)$ 1.05276 < 0.49197								
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.251 < 1.58								
L _w larghezza della finestra [s]									
n_w numero di finiestre utilizzate per l'analisi [num] $n_c = L_w n_w f_0$ numero di clicli significativi [num]									
	frequenza di picco H/V [Hz]					9.84			
f	frequenza								
$\sigma_{\scriptscriptstyle{f}}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 1.05			
$\varepsilon(f_0)$	valore soglia per condizioni di stabil					0.49			
A_0	ampiezza del picco H/V alla frequer					3.47			
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f							
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A ₁	$H/V(f^+) < A_{0}/V$	/2						
$\sigma_{A}(f_0)$	deviazione standard di A ₀					± 1.25			
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)								
$\sigma_{logH/V}(f)$	deviazione standard della curva log								
$\Theta(f_0)$	valore soglia per la condizione di sta	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.58			
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2			

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

orofon. contrast	to: 5-10 m
	[qualche metro]
contrasto:	ALTO

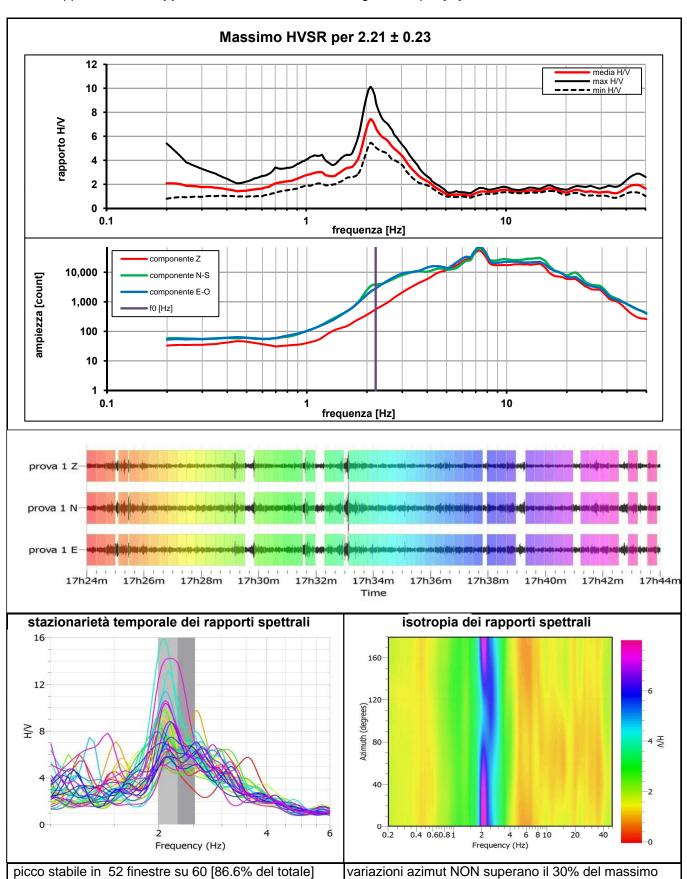
SEANO - prova 1

località:	SEA	NO				data:		26/07/2012	ora:		17:24:29
operatore:	Peruz	Peruzzi - Mantovani									
latitudine:	43,83	3276	N			longitudine: 11,03465E			quota s.l.	.m.: 37,4	
nome stazione:	prova	a 1				orientamento strume	nt	o rispetto al Nord:	98°		
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	ve	elocimetri 4,5 Hz			
nome file:	ile: MT_20120726_172429.SAF										
gain:						freq.campion.[Hz]:		300	durata re	ec. [mm:ss]:	20.00
condizioni	VENT			ass	ente	debole (5m/s)	me	edio forte	Misu	rato	_
meteo	PIOG	GIA	X	ass	ente	debole medio		forte	Misur	rato	
	temperatura (°C approx) 35° Note:										
natura terreno appoggio											
	X	suolo	asciu	tto	8	suolo umido		Note: _ privo d'erba			
accoppiamento	artific	iale	al su	iolo:		X no	si,	tipologia			
densità edifici:		nessu	uno	dis	persi	X addensati	altr	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo	ri, pompe,		,
automobili		X				3	Ī	strutture nelle vicir	nanze:	alberi, sondaggi, e	
camion	Х						ľ	(descrizione, altezza, dist	anza)	strutture sotterrane	ee,
pedoni		X				3		- alberi H=6-7 m dis - edifici H = 15 m dis	-		
altro								Samor II – 10 III uis	. – 0 III		

note:

- raffiche di vento

copertura: alluvioni recenti bedrock: Macigno Londa


SEANO - prova 1

Inizio registrazione [data ora]: 26/07/2012 17:24:29

Lunghezza della registrazione [s] 1200 Lunghezza tot. finestre analizzate [s] 1040

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10,00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PROGETTO SESAME												
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]												
i R	$f_0 > 10 / L_w$	sere soddis	2.21		0.50	ok						
	m (5) > 000											
ii R	****	- 0 FUI-		>		ok						
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		eccede	su	251	ok						
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0 P chiaro [C	1	punti							
	Criteri per un picco HVSR chiaro [C] [è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]											
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		1.679	Hz	-	ok						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		3.333	Hz		ok						
iii C	A ₀ > 2	•	6.86	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	5%	0.053	<	0.05	no						
v C	$\sigma_f < \varepsilon(f_0)$ 0.23878 < 0.11059											
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.362 < 1.58											
L _w	I have a stable for the fel											
n _w	numero di finiestre utilizzate per l'analisi [num]											
**	numero di clicli significativi [num]					52 2300						
f ₀	frequenza di picco H/V [Hz]					2.21						
f	frequenza											
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.23						
$\varepsilon(f_0)$	valore soglia per condizioni di stabil	lità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe			0.11						
A_0	ampiezza del picco H/V alla frequer	nza f _o				6.86						
$A_{H/V}(f)$	ampiezza della curva H/V alla frequ	enza f										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A											
f +	frequenza fra f ₀ e 4f ₀ per la quale A	$_{\text{H/V}}(f^+) < A_{0}$	/2									
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.36						
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)	A (6)										
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log											
$\theta(f_0)$	valore soglia per la condizione di st	abilita σ _A (f)	< θ(t ₀) - vec	di tabella so	tto	1.58						
	Freq.range [Hz]	1.0 – 2.0	> 2.0									
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	0.48	2.5 0.4	0.3	1.78 0.25	1.58 0.2						
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.40	0.4	0.5	0.23	U.Z						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

contrasto:	ALTO	<u> </u>
[decine di m	etri]
profon. contrast	o: 30-50) m

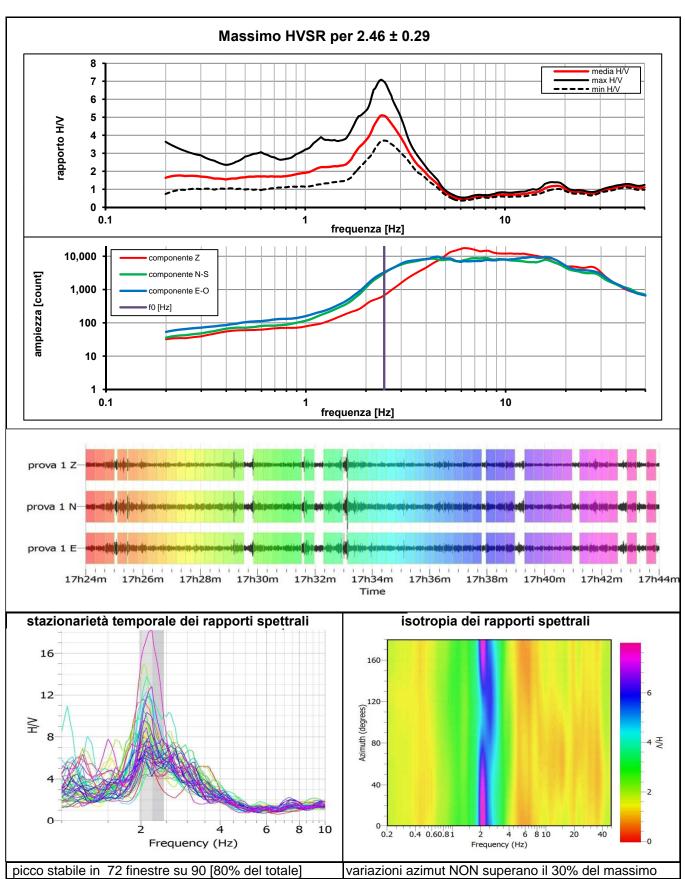
SEANO - prova 2

località:	SEANO					data:		26/07/2012	ora:		17:55:31
operatore:	Peru	ızzi -	Man	tovan	i						
latitudine:	43,8	3262	:N			longitudine: 11,02968E			quota s.l.ı	m.: 37,5	
nome stazione:	prov	⁄a 2				orientamento strume	nt	o rispetto al Nord:	59°		
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	VE	elocimetri 4,5 Hz			
nome file:	MT_	2012	0726	175	531.	SAF					
gain:						freq.campion.[Hz]:		300	durata red	c. [mm:ss]:	30.00
condizioni meteo	VEN PIO	TO GGIA		ass	ente ente	debole (5m/s) X	m	edio forte		ato	
	temperatura (°C approx) Note:										
natura terreno appoggio X terra X dura soffice ghiaia sabbia roccia cemento calcestruzzo pavimentato									X	erba X bas	
	X	suolo	asciu	tto		uolo umido Note:					
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessu	uno	X dis	persi	addensati	alt	ro, tipologia _ capannoni	industriali _		
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo no X si, tipol	ri, pompe, c		,
automobili				X		5		strutture nelle vicir		alberi, sondaggi, e	difici, ponti,
camion		X				5		(descrizione, altezza, dist	anza)	strutture sotterrane	ee,
pedoni altro	X					5					

note:

- si sente il rumore di una pompa ma non si riesce ad individuare; sembra che non interferisca significativamente;

- raffiche di vento


copertura: alluvioni recenti bedrock: Macigno Londa

SEANO - prova 2

Inizio registrazione [data ora]: 26/07/2012 17:55:31

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1440

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PROGETTO SESAME												
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]												
i R	f ₀ > 10 / L _w 2.47 > 0.50 ok											
ii R	$n_c(f_0) > 200$											
II K												
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ eccede 251 $\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$ 0 punti											
	$\int_{A} \sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f$ Criteri per un p			1	punti							
	[è stato escluso il criterio vC: alr			-	sfatti]							
i C	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		1.661	Hz		ok						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		3.542	Hz		ok						
iii C	A ₀ > 2		5.09	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	5%	0.026	<	0.05	ok						
v C	$\sigma_f < \varepsilon(f_0)$		0.29344	<	0.12342	no						
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.388 < 1.58											
n _w	L _w larghezza della finestra [s] n _w numero di finiestre utilizzate per l'analisi [num]											
***	numero di clicli significativi [num]	lansı [manı]				72 3554						
f ₀	frequenza di picco H/V [Hz]					2.47						
f	frequenza					<u>—</u>						
$\sigma_{\scriptscriptstyle{\mathrm{f}}}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.29						
ε(f ₀)	valore soglia per condizioni di stabili			ella sotto		0.12						
A ₀	ampiezza del picco H/V alla frequen					5.09						
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f										
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$\iota_{H/V}(f^{-}) < A_0$	/2									
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _F	$_{H/V}(f^+) < A_{0}$	/2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.38						
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)											
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log					,						
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	tabella so	tto	1.58						
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58						
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

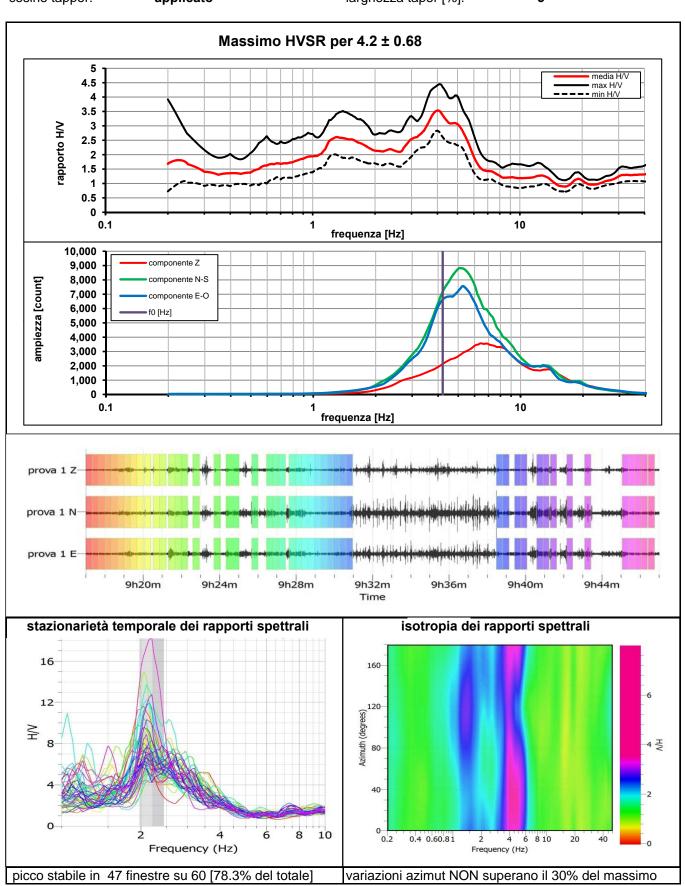
CLASSE	Α
SOTTOCLASSE	Tipo 1

contrasto:		ALTO
	[decine	di metri]
profon. contras	to:	30-50 m

SEANO - prova 3

località:	SEA	NO				data:		27/07/2012	ora:		09:17:39
operatore:	Peru	ızzi -	Man	tovan	i						
latitudine:	43,8	2901	N			longitudine:		11,02668E	quota s.l.m.:	41,0	
nome stazione:	prov	va 3				orientamento strume	ent	o rispetto al Nord:	0°		
tipo stazione:	SAF	RA SF	R04H	S		tipo sensori:	VE	elocimetri 4,5 Hz			
nome file:	MT_	2012	20727	_091	739.	SAF					
gain:						freq.campion.[Hz]:		300	durata rec. [mm:ss]:	30.00
condizioni meteo	VEN	ITO GGIA	\ \ \	ass	ente ente	X debole (5m/s) debole medio	,	edio forte			
	temperatura (°C approx) Note:										
natura terreno appoggio X terra X dura soffice ghiaia sabbia cemento calcestruzzo pav								roccia	X eri	ba E alt	ssa a
	X	suolo	asciu	tto	s	uolo umido Note:					
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessi	uno	X dis	persi	addensati	alt	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo		si d'acqua,	·
automobili		X				2	֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֡֡֡֡֡֡	strutture nelle vicir	l air	peri, sondaggi, e	edifici, ponti,
camion	X					2		(descrizione, altezza, dist	anza) str	utture sotterran	ee,
pedoni altro		Х				4					
		<u> </u>					J				

copertura: alluvioni recenti bedrock: C. Caotico


SEANO - prova 3

Inizio registrazione [data ora]: 27/07/2012 09:17:39

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 940

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PR	OGETTO SESAME											
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]											
	1	ere soaais			0.50	ok						
i R	$f_0 > 10 / L_w$ 4.21 > 0.50											
ii R	$n_c(f_0) > 200$		3957	>	200	ok						
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > f$	> 0.5Hz	eccede	su	251	ok						
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f < 2f_{0} < f_{0} < f_$		0		punti							
Criteri per un picco HVSR chiaro [C]												
[è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]												
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz		no						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <	A ₀ / 2	6.224	Hz		ok						
iii C	A ₀ > 2		3.41	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.055	<	0.05	no						
v C	$\sigma_f < \varepsilon(f_0)$		0.68953	<	0.21050	no						
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.251	<	1.58	ok						
L _w larghezza della finestra [s]												
n _w	numero di finiestre utilizzate per l'an	alisi [num]				20 47						
	numero di clicli significativi [num]					3957						
f ₀	frequenza di picco H/V [Hz]					4.21						
f	frequenza											
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.68						
ε(f ₀)	valore soglia per condizioni di stabili			ella sotto		0.21						
A ₀	ampiezza del picco H/V alla frequen					3.41						
A _{H/√} (f)	ampiezza della curva H/V alla freque	enza f										
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2									
f ⁺												
$\sigma_{A}(f_{0})$	deviazione standard di A ₀											
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)				······································							
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)										
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58						
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58						
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" -Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

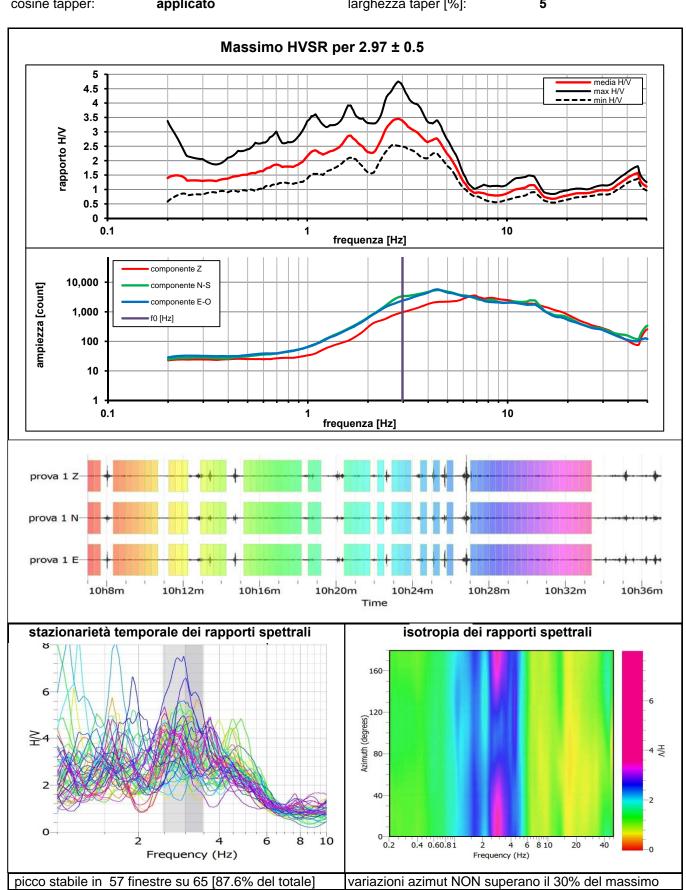
<u>Va</u>	lut	azi	oni	qua	litative)
pro	ofo	n.	cor	ntras	to:	20

0-30 m [decine di metri] **ALTO** contrasto:

SEANO - prova 3bis

località:	SEA	NO				data:		27/07/2012	ora:		10:07:03
operatore:	Peru	zzi -	Man	tovan	i						
latitudine:	43,8	2965	N			longitudine:		11,02644E	quota s.l.m.	.: 41,0	
nome stazione:	prov	a 3b	is			orientamento strume	nt	o rispetto al Nord:	125°		
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	ve	elocimetri 4,5 Hz			
nome file: MT_20120727_100703.SAF											
gain:						freq.campion.[Hz]:		300	durata rec.	[mm:ss]:	30.00
	VEN	VENTO X assente debole (5m/s) medio forte							Misurato)	
condizioni meteo	PIOGGIA X assente debole medio forte						forte	Misurato)		
	temp	erati	ura (°	°C ap	prox)		Note:			
natura terreno appoggio											
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessı	uno	dis	persi	X addensati	altı	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo no si, tipol		rsi d'acqua, e	ecc.):
automobili		X				10		strutture nelle vicir	"!	lberi, sondaggi, ed trutture sotterrane	
camion	X					10		(descrizione, altezza, dist	ariza)	iruiture sotterrañe	е,
pedoni	X					10		alberi H = 4-5 m disedifici H = 6 m di	st = 3-4 m st = 5-6 m		
altro								Camer II – O III	.s. = 0 0 m		

note:


- sulla strada, proprio in prossimità stazione di misura, c'è un dosso rallentatore copertura: alluvioni recenti bedrock: C. Caotico

SEANO - prova 3bis

Inizio registrazione [data ora]: 27/07/2012 10:07:03

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1140

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	CRITERI PROGETTO SESAME												
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]													
i R	$f_0 > 10 / L_w$	Sere Soudio	2.98		0.50	ok							
	$n_{c}(f_{0}) > 200$	· "											
ii R		0 =: 1_	3393	>	200	ok							
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ eccede 250												
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		0	-	punti								
Criteri per un picco HVSR chiaro [C] [è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]													
i C esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 \mid 2$ 0.000 Hz													
ii C	esiste f in $[f_0, 4f_0] \mid A_{H/V}(f^+) <$		5.634	Hz		no ok							
	esiste i iii [i ₀ , 4i ₀] $A_{H/V}(i)$ $A_0 > 2$	A ₀ / Z											
iii C	· · · · · · · · · · · · · · · · · · ·	•••	3.40	>	2	ok							
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	5%	0.087	<	0.05	no							
v C	$\sigma_f < \varepsilon(f_0)$		0.50597	<	0.14881	no							
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.374	<	1.58	ok							
L _w larghezza della finestra [s]													
n _w													
$n_c = L_w n_w f_0$	numero di clicli significativi [num]					3393							
f_0	frequenza di picco H/V [Hz]					2.98							
f	frequenza												
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.5							
ε(f ₀)	valore soglia per condizioni di stabil			ella sotto		0.15							
A_0	ampiezza del picco H/V alla frequer					3.40							
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f											
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$\Lambda_{H/V}(f^{-}) < \Lambda_{0}$	/2										
f ⁺	f + frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$												
$\sigma_A(f_0)$	deviazione standard di A ₀												
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)												
$\sigma_{\text{logH/V}}(f)$													
θ (f ₀)	valore soglia per la condizione di st	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0							
	$\epsilon(f_0)$ [Hz]	(0/2 2											
		0.25 f ₀	0.2 f ₀ 2.5	0.15 f ₀	0.10 f ₀ 1.78	0.05 f ₀							

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

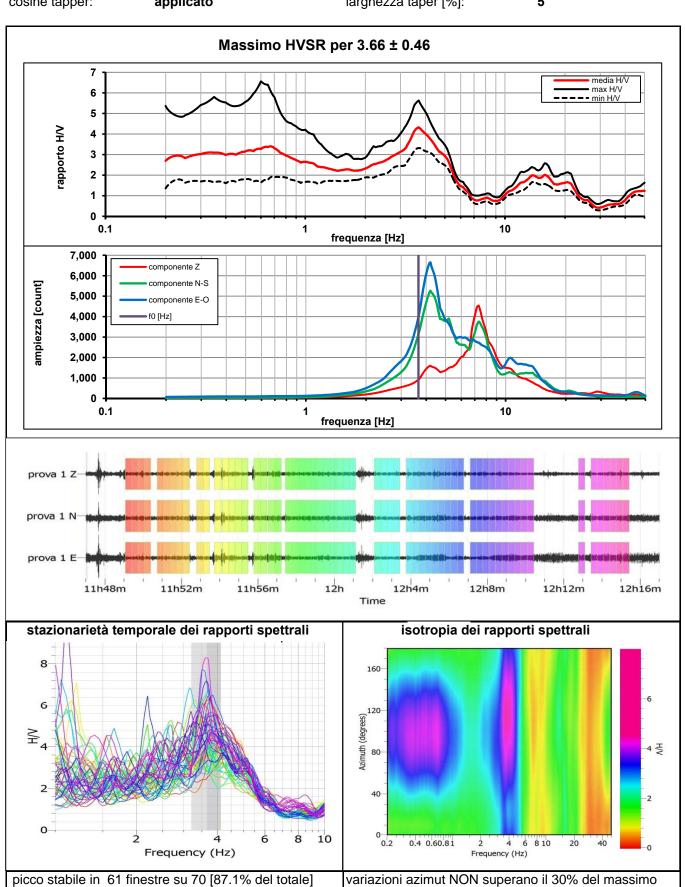
CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni	qualitative

orofon. contrasto:	30-50 m
[dec	ine di metri]
contrasto:	ALTO

SEANO - prova 4

località:	SEA	NO				data:		27/07/2012	ora:		11:47:09
operatore:	Peru	ızzi -	Man	tovan	i						
latitudine:	43,8	3446	N			longitudine: 11,01565E			quota s.l.m	.: 41,1	
nome stazione:	prov	/a 4				orientamento strum	en	to rispetto al Nord:	40°		
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	٧	elocimetri 4,5 Hz			
nome file:	: MT_20120727_114709.SAF										
gain:						freq.campion.[Hz]:		300	durata rec.	[mm:ss]:	30.00
condizioni meteo	VENTO assente PIOGGIA X assente					X debole (5m/s) medio forte				o	
meteo	temperatura (°C approx) Note:										
natura terreno appoggio X terra X dura soffice						ghiaia sabbia roccia X erba X bassa alta alta					
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessu	uno	X dis	persi	addensati	alt	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	nolto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipol	ri, pompe, co		ecc.):
automobili	X				_			strutture nelle vicir	١٩	alberi, sondaggi, e	
camion	Х							(descrizione, altezza, dist	Lariza)	strutture sotterrane	ee,
pedoni	X							- edifici H = 5 m dist	= 30 m		
altro											


copertura: alluvioni recenti bedrock: Macigno Londa?

SEANO - prova 4

Inizio registrazione [data ora]: 27/07/2012 11:47:09

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1220

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

CRITERI PR	CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]												
	1	ere sodais	_		0.50	ok						
i R	f ₀ > 10 / L _w 3.66 > 0.50											
ii R	$n_c(f_0) > 200$		4468	>	200	ok						
iii R		$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ eccede su										
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ 0 punti											
Criteri per un picco HVSR chiaro [C]												
[è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]												
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz		no						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	5.481	Hz	_	ok .						
iii C	A ₀ > 2		4.31	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^\circ$	%	0.836	<	0.05	no						
v C	$\sigma_f < \varepsilon(f_0)$		0.46120	<	0.18312	no						
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.302	<	1.58	ok						
L _w larghezza della finestra [s]												
n _w	numero di finiestre utilizzate per l'ana	alisi [num]				20 61						
$n_c = L_w n_w f_0$	numero di clicli significativi [num]					4468						
f ₀	frequenza di picco H/V [Hz]					3.66						
f	frequenza											
σ_{f}	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.46						
$\varepsilon(f_0)$	valore soglia per condizioni di stabili			ella sotto		0.18						
A_0	ampiezza del picco H/V alla frequen:					4.31						
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f			······································							
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A ₁	$H_{1/V}(f^{-}) < A_0$	/2									
f ⁺	f ⁺ frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$											
$\sigma_{A}(f_{0})$	deviazione standard di A ₀											
$\sigma_{A}(f)$												
$\sigma_{\text{logH/V}}(f)$	_{ರlogH/v} (f) deviazione standard della curva log A _{H/v} (f)											
$\theta(f_0)$	valore soglia per la condizione di sta	bilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58						
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58						
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

	[dec contrasto:	ine di metri] ALTO
arofon contracto: 20-30 m	orofon. contrasto:	20-30 m

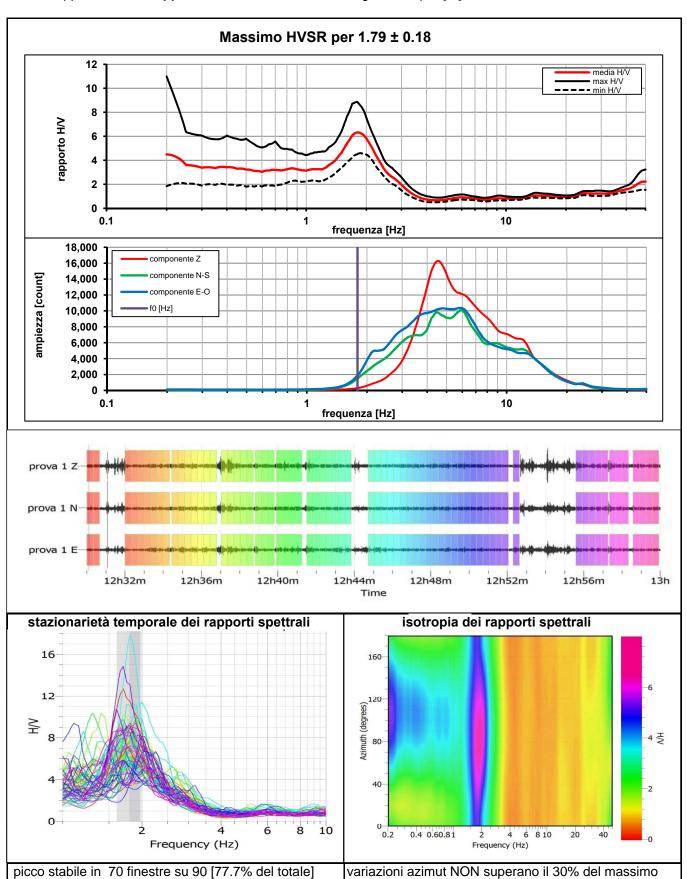
SEANO - prova 5

località:	SEA	NO				data:		27/07/2012	ora:		12:30:22
operatore:	Peru	Peruzzi - Mantovani									
latitudine:	43,8	3643	N			longitudine:		11,02392E	quota s.l.m.:	36,7	
nome stazione:	prov	/a 5				orientamento strumento rispetto al Nord:			30°		
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	sensori: velocimetri 4,5 Hz				
nome file:	MT_20120727_123022.SAF										
gain:						freq.campion.[Hz]:		300	durata rec. [r	nm:ss]:	30.00
condizioni	VEN	ITO		ass	ente	X debole (5m/s)	me	edio forte	Misurato		
meteo	PIO	GGIA	.)	ass	ente	debole medio		forte	Misurato _		
	temp	oerati	ura (°	°C ap	prox)		Note:			
natura terreno appoggio	X terra Soffice ghiaia sabbia roccia X erba X erba alta										
	X suolo asciutto Suolo umido Note:										
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessı	uno	X dis	persi	addensati	altr	o, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo		i d'acqua, e	
automobili		X				3		strutture nelle vicir	I aine	eri, sondaggi, ed	difici, ponti,
camion	X					3	11	(descrizione, altezza, dist		tture sotterrane	е,
pedoni		X				3] ·	- edifici H = 6-7 m di	ist = 10 m		
altro											

note:

- rumore di fondo di un aspiratore di un capannone a circa 50 m;
- trattore che ara nel campo adiacente a circa 50 m di distanza

copertura: alluvioni recenti bedrock: Macigno Londa


SEANO - prova 5

Inizio registrazione [data ora]: 27/07/2012 12:30:22

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1400

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R]											
	[devono essere soddisfatti tutti] f ₀ > 10 / L _w 1.79 > 0.50 Ok										
i R	f ₀ > 10 / L _w 1.79 > 0.50										
ii R	$n_c(f_0) > 200$ 2511 > 200										
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ eccede su										
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz$ 0 punti										
Criteri per un picco HVSR chiaro [C]											
[è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]											
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		2.416	Hz		ok					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <	A ₀ / 2	2.486	Hz		ok					
iii C	A ₀ > 2		6.31	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.040	<	0.05	ok					
v C	$\sigma_f < \varepsilon(f_0)$		0.18639	<	0.17934	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.402 < 1.78										
L _w larghezza della finestra [s]											
n_w numero di finiestre utilizzate per l'analisi [num] 70 $n_c = L_w n_w f_0 \text{ numero di clicli significativi [num]} 2511$											
f ₀											
f	frequenza										
σ_{f}	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.18					
ε(f ₀)	valore soglia per condizioni di stabili					0.18					
A ₀	ampiezza del picco H/V alla frequen					6.31					
A _{H/√} (f)	ampiezza della curva H/V alla freque	enza f									
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A ₁	$A_{1/V}(f^{-1}) < A_0$	/2								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _H	$_{1/1}(f^{+}) < A_{0}$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.4					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)				·						
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)									
$\theta(f_0)$	valore soglia per la condizione di sta	ıbilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.78					
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0) \text{ for } s_A(f_0)$ 3 2.5 2 1.78 1.58										
	Log θ(f ₀) for $σ_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2										

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

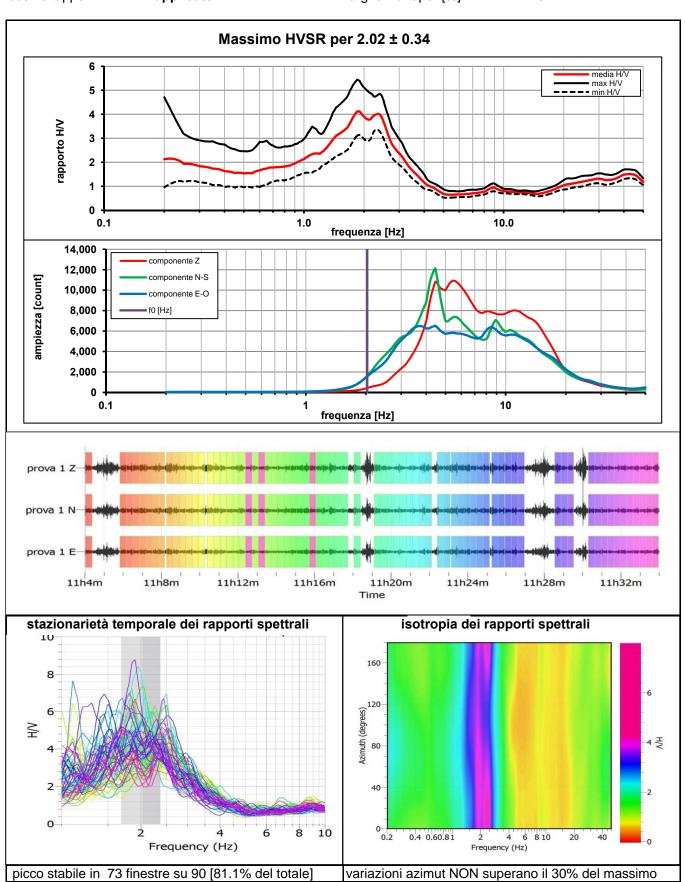
CLASSE	Α
SOTTOCLASSE	Tipo 1

contrasto:	ALTO
[de	ecine di metri]
profon. contrasto	: 50-100 m

SEANO - prova 6

località:	SEA	NO				data:	27/07/2012	ora:	11:04:19	
operatore:	Peruzzi - Mantovani									
latitudine:	43,8	3332	:N			longitudine:	11,02321E	quota s.l.m.:	38,9	
nome stazione:	prov	/a 6				orientamento strume	ento rispetto al Nord:	42°		
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	velocimetri 4,5 Hz			
nome file:	MT_20120727_110419.SAF									
gain:						freq.campion.[Hz]:	300	durata rec. [n	nm:ss]: 30.00	
condizioni	VEN	ITO GGIA		ass		debole (5m/s)	medio forte	_		
meteo								Wildurato _		
	temp	perati	ura (°	°C ap	prox)	Note:			
natura terreno appoggio									a [alta]	
	X	suolo	asciu	tto		suolo umido	Note:			
accoppiamento	accoppiamento artificiale al suolo: X no si, tipologia									
densità edifici:		nessu	uno	X dis	persi	addensati	altro, tipologia			
transienti:	fonti di rumore monocromatico (fabbriche,cantieri lavori, pompe, corsi d'acqua, ecc.): X no									
automobili			X			4	strutture nelle vici	ri, sondaggi, edifici, ponti,		
camion		X				4	(descrizione, altezza, dis	tanza) strut	ture sotterranee,	
pedoni		Χ				- edifici H = 5-6 m dist = 20 m				
altro										

copertura: alluvioni recenti bedrock: Macigno Londa?


SEANO - prova 6

Inizio registrazione [data ora]: 27/07/2012 11:04:19

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1460

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]											
i R	$f_0 > 10 / L_w$	ere soudisi	2.03	>	0.50	ok					
ii R	$n_c(f_0) > 200$		2963	-	200	ok					
II N	****	0 EU-7	eccede	>	251	UK					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < $	SU									
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz \qquad 0$ punti Criteri per un picco HVSR chiaro [C]										
	[è stato escluso il criterio vC: alr		-	-	sfatti]						
i C											
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		3.296	Hz		ok ok					
iii C	A ₀ > 2		3.85	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.147	<	0.05	no					
v C	$\sigma_f < \varepsilon(f_0)$		0.34364	<	0.10147	no					
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.314 < 1.58										
A(V) (V)											
L _w larghezza della finestra [s]											
n _w numero di finiestre utilizzate per l'analisi [num]											
	numero di clicli significativi [num]					2963					
† ₀	frequenza di picco H/V [Hz]					2.03					
I	frequenza	a di picco d	: IJ^/[凵 ¬]			± 0 2 4					
$\sigma_{\rm f}$	deviazione standard della frequenza					± 0.34					
ε(f ₀)	valore soglia per condizioni di stabili) - vedi tabe	ella sotto		0.10					
A ₀	ampiezza del picco H/V alla frequen					3.85					
A _{H/V} (f)	ampiezza della curva H/V alla freque										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A										
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _b	$_{\text{I/V}}(f^{+}) < A_{0}$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.31					
_ (1)	deviazione standard di A _{H/V} (f)										
$\sigma_{A}(f)$											
$\sigma_{A}(f)$ $\sigma_{logH/V}(f)$			valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58								
			$< \theta(f_0)$ - vec	di tabella so	tto	1.58					
$\sigma_{logH/V}(f)$			$< \theta(f_0)$ - vec	di tabella so	tto	1.58 > 2.0					
$\sigma_{logH/V}(f)$	valore soglia per la condizione di sta	abilità σ _A (f)									
$\sigma_{logH/V}(f)$	valore soglia per la condizione di sta	abilità σ _A (f)	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

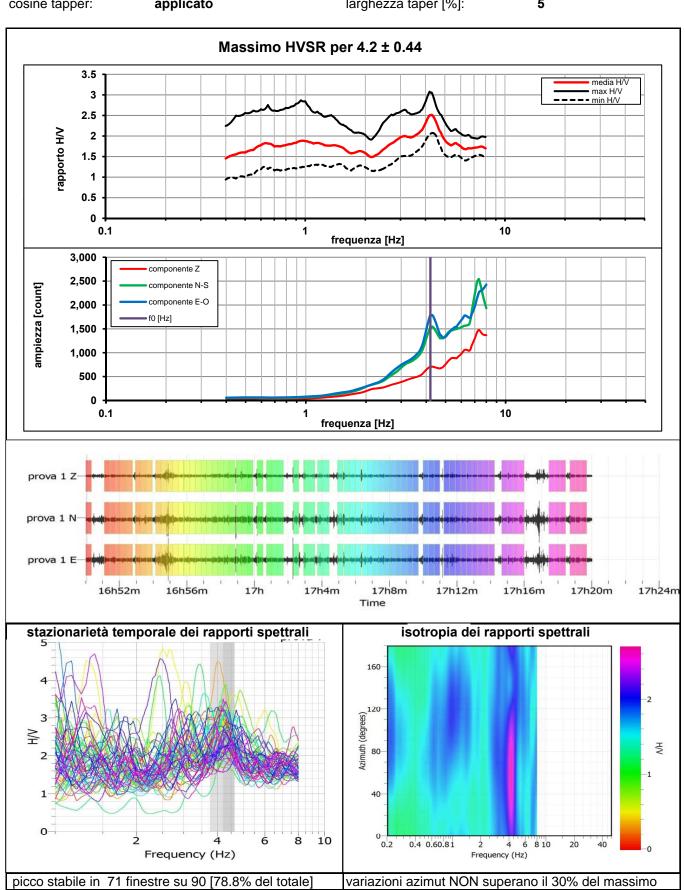
Valutazioni qualitative

profon. contrasto: 30-50 m
[decine di metri]
contrasto: ALTO

SEANO - prova 7

località:	SEA	NO				data:		31/07/2012	ora:		16:50:54
operatore:	Man	tovar	ni		<u> </u>						
latitudine:	43,8	2982	N.			longitudine: 11,01811E			quota s.l.m.:	46,0	
nome stazione:	prov	/a 7				orientamento strume	ent	o rispetto al Nord:	330°		
tipo stazione:	SARA SR04HS					tipo sensori:	ve	locimetri 4,5 Hz			
nome file:	MT_	2012	20731	1_165	054.	SAF					
gain:						freq.campion.[Hz]:	;	300	durata rec. [r	mm:ss]:	30.00
condizioni meteo	VENTO X assente PIOGGIA assente					debole (5m/s) medio forte X debole medio forte					
meteo	temperatura (°C approx) Note:										
natura terreno appoggio											
	X	suolo	asciu	itto	5	suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessı	uno	dis	persi	X addensati	altr	o, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore moi (fabbriche,cantieri lavo X no si, tipol		i d'acqua,	
automobili			X			6		strutture nelle vicir	I aine	eri, sondaggi, e	difici, ponti,
camion		X				6		(descrizione, altezza, dist		itture sotterrane	ee,
pedoni			X			3	∐	edifici H = 5-6 m di	st = 15 m		
altro											

copertura: lacustre bedrock: C. Caotico


SEANO - prova 7

Inizio registrazione [data ora]: 31/07/2012 16:50:54

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1420

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale cosine tapper: cosin

CRITERI PR	CRITERI PROGETTO SESAME										
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]										
i R	f ₀ > 10 / L _w	are soudisi	4.20	>	0.50	ok					
ii R	$n_c(f_0) > 200$		5964		200	ok					
II IX	****	Λ Ε Η 7	eccede	>	447	UK					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < f_{0} < $			su		ok					
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f$		0 R chiaro IC	1	punti						
	Criteri per un picco HVSR chiaro [C] [è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]										
i C	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		0.000	Hz	-	no					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no					
iii C	A ₀ > 2	-	2.50	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^{\circ}$	%	0.033	<	0.05	ok					
v C	$\sigma_f < \varepsilon(f_0)$		0.44260	<	0.21000	no					
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$ 1.214 < 1.58										
L	L _w larghezza della finestra [s]										
	n_w numero di finiestre utilizzate per l'analisi [num] $n_c = L_w n_w f_0 \;\; \text{numero di clicli significativi [num]}$										
f ₀	frequenza di picco H/V [Hz]					4.20					
f	frequenza										
$\sigma_{ m f}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.44					
$\varepsilon(f_0)$	valore soglia per condizioni di stabili	tà $\sigma_{\rm f}$ < $\varepsilon({\rm f}_0$) - vedi tabe	ella sotto		0.21					
A_0	ampiezza del picco H/V alla frequen					2.50					
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f									
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A ₁										
f ⁺	frequenza fra f_0 e $4f_0$ per la quale A_H	$_{\wedge}(f^{+}) < A_{0}$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.21					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)	- 45									
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log		0//)								
$\theta(f_0)$	valore soglia per la condizione di sta	bilita σ _A (f)	< θ(f ₀) - vec			1.58					
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$ Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	2.5 0.4	0.3	1.78 0.25	1.58 0.2					
	Log $\Theta(I_0)$ for $\Theta_{logH/V}(I_0)$	0.40	0.4	0.5	0.20	0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

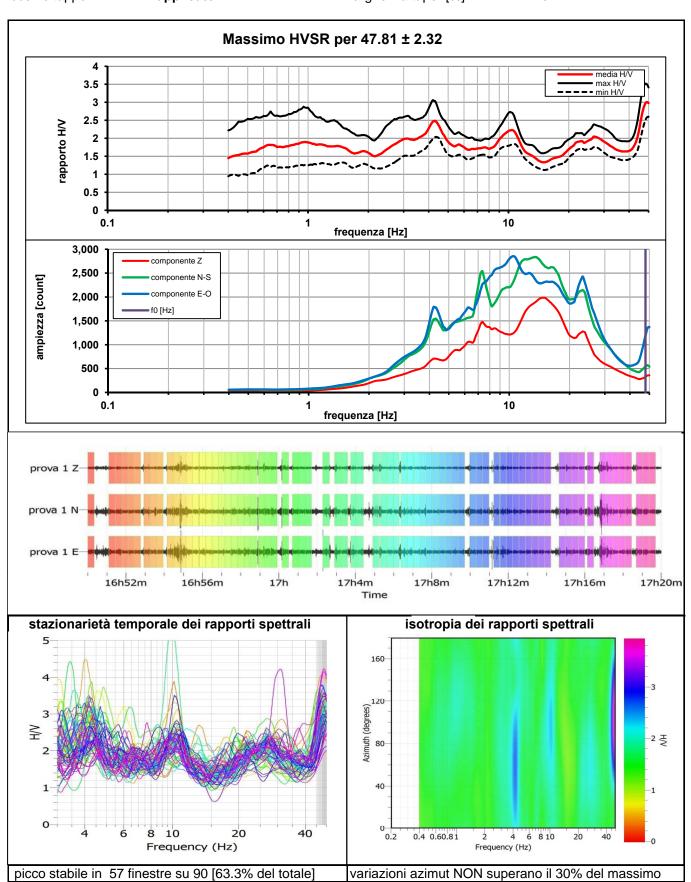
CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

	decine di metri]
contrasto:	BASSO

copertura: all.recenti-lacustre bedrock: C. Caotico

Elaborazione spettro completo


SEANO - prova 7

Inizio registrazione [data ora]: 31/07/2012 16:50:54

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1140

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing:
cosine tapper:proportional
applicatocostante di smoothing [%]:10.00larghezza taper [%]:5

CRITERI PR	OGETTO SESAME									
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]										
: D		sere soddisi	,		0.50	alı				
i R	f ₀ > 10 / L _w		47.81	>	0.50	ok				
ii R	$n_c(f_0) > 200$		54505	>	200	ok				
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 0.5f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 0.5f_0 > 0.5f_0 < f < 0.5f_0 > 0.5f_0 < f < 0.5f_0 > 0.5f_0 > 0.5f_0 < f < 0.5f_0 > 0.5f_0$		eccede	su	153	ok				
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f < 2f_0 \text{ if } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 < f < 2f_0 \text{ or } f_0 < f < 2f_0 <$		0		punti					
Criteri per un picco HVSR chiaro [C] [è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]										
i C										
ii C				Hz		ok				
	esiste f^+ in $[f_0, 4f_0] \mid A_{H/V}(f^+) < A_{H/V}(f^+) < A_{H/V}(f^+)$	· A ₀ / Z	0.000			no				
iii C	A ₀ > 2		2.92	>	2	ok				
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.046	<	0.05	ok				
v C	$\sigma_f < \varepsilon(f_0)$		2.32995	<	2.39058	ok				
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.166 < 1.58									
L _w larghezza della finestra [s]										
n _w numero di finiestre utilizzate per l'analisi [num]										
$n_c = L_w n_w f_0$ numero di clicli significativi [num]										
f ₀	frequenza di picco H/V [Hz]					47.81				
f	frequenza									
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 2.32				
$\varepsilon(f_0)$	valore soglia per condizioni di stabil	lità $\sigma_{\rm f} < \varepsilon(f_0)$,) - vedi tabe			2.39				
A_0	ampiezza del picco H/V alla frequer					2.92				
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f								
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$\Lambda_{H/V}(f^{-}) < A_0$	/2							
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A ₁	$_{H/V}(f^+) < A_0/$	/2							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.16				
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)									
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log	A _{H/V} (f)								
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58				
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0				
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀				
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58				
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2				

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	no
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 1

Valutazioni qualitative
profon. contrasto: < 5 m

[qualche metro] contrasto: BASSO

Elaborazione picco superficiale

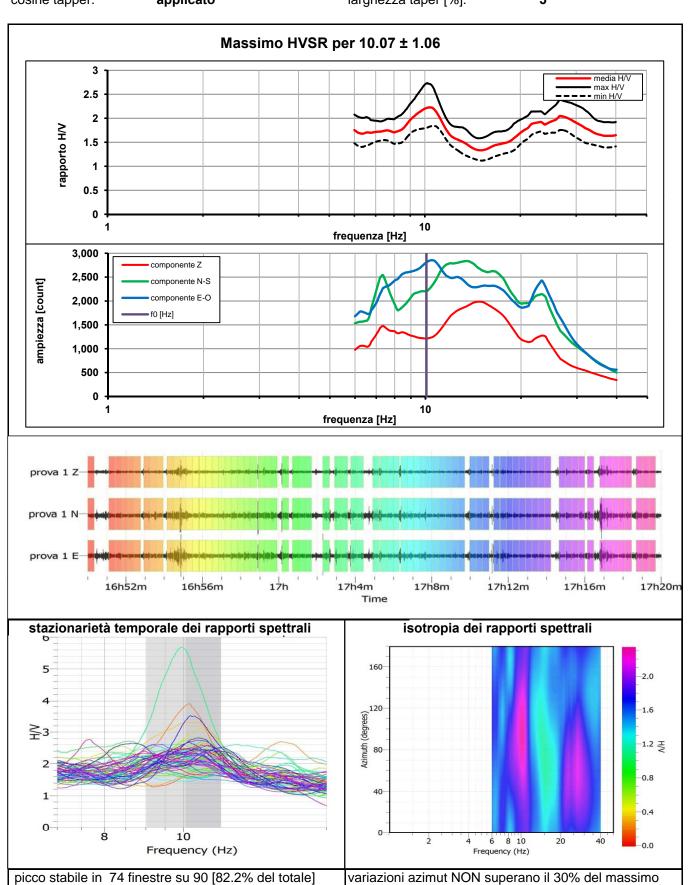
SEANO - prova 7

località:	SEA	NO				data:		31/07/2012	ora:		16:50:54
operatore:	Man	tovar	ni								
latitudine:	43,8	2982	N			longitudine: 11,01811E			quota s.l.m.: 46,0		
nome stazione:	prova 7					orientamento strume	nt	to rispetto al Nord:	330°		
tipo stazione:	SARA SR04HS					tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	0731	_165	054.	SAF					
gain:						freq.campion.[Hz]: 300			durata re	c. [mm:ss]:	30.00
4!!	VENTO X assente					debole (5m/s) medio forte			Misu	rato	
condizioni meteo	PIO	GGIA		ass	ente	X debole medio		forte	Misur	ato	
	temperatura (°C approx) Note:										
natura terreno appoggio asfalto cemento calcestruzzo pavimentato altro											
	X	suolo	asciu	tto	s	suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	iolo:		X no	si,	tipologia			
densità edifici:		nessu	uno	dis	persi	X addensati	alt	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo	ri, pompe,		ecc.):
automobili			X			6		strutture nelle vicir		alberi, sondaggi, e	difici, ponti,
camion		X				6		(descrizione, altezza, dist		strutture sotterrane	ee,
pedoni			X			3		- edifici H = 5-6 m d	ist = 15 m		
altro											

note:

copertura: alluvioni recenti bedrock: lacustre

Elaborazione picco superficiale


SEANO - prova 7

Inizio registrazione [data ora]: 31/07/2012 16:50:54

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1480

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	CRITERI PROGETTO SESAME										
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]										
i R	f ₀ > 10 / L _w	570 00aa.c.	10.07	>	0.50	ok					
ii R	$n_c(f_0) > 200$		14908	>	200	ok					
D	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > f$	0.5Hz	eccede		638	- 1-					
iii R	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f < 2f_{0} < f < 2f_{0} \text{ if } f_{0} < f < 2f_{0} < $	0.5Hz	0	su	punti	ok					
	Criteri per un p				C . ((17						
	[è stato escluso il criterio vC: aln				stattıj						
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz		no					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	0.000	Hz		no					
iii C	A ₀ > 2		2.21	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^\circ$	%	0.061	<	0.05	no					
v C	$\sigma_f < \varepsilon(f_0)$		1.06194	<	0.50365	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.217 < 1.58										
L _w	L _w larghezza della finestra [s]										
n _w	numero di finiestre utilizzate per l'ana	alisi [num]				74					
n_w numero di finiestre utilizzate per l'analisi [num] $n_c = L_w n_w f_0$ numero di clicli significativi [num]											
f ₀	frequenza di picco H/V [Hz]					10.07					
f	frequenza										
σ_{f}	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 1.06					
$\varepsilon(f_0)$	valore soglia per condizioni di stabili	tà $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	ella sotto		0.50					
A_0	ampiezza del picco H/V alla frequena	za f ₀				2.21					
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f									
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A ₁										
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _{H/V} (f ⁺) < A ₀ /2										
$\sigma_{A}(f_{0})$											
	$\sigma_{A}(f)$ deviazione standard di $A_{H/V}(f)$										
	σ _{logH/V} (f) deviazione standard della curva log A _{H/V} (f)										
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58										
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀ 2.5	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$ Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					
	Log V(10) for GlogH/V(10)	0.40	0.4	0.0	0.23	0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

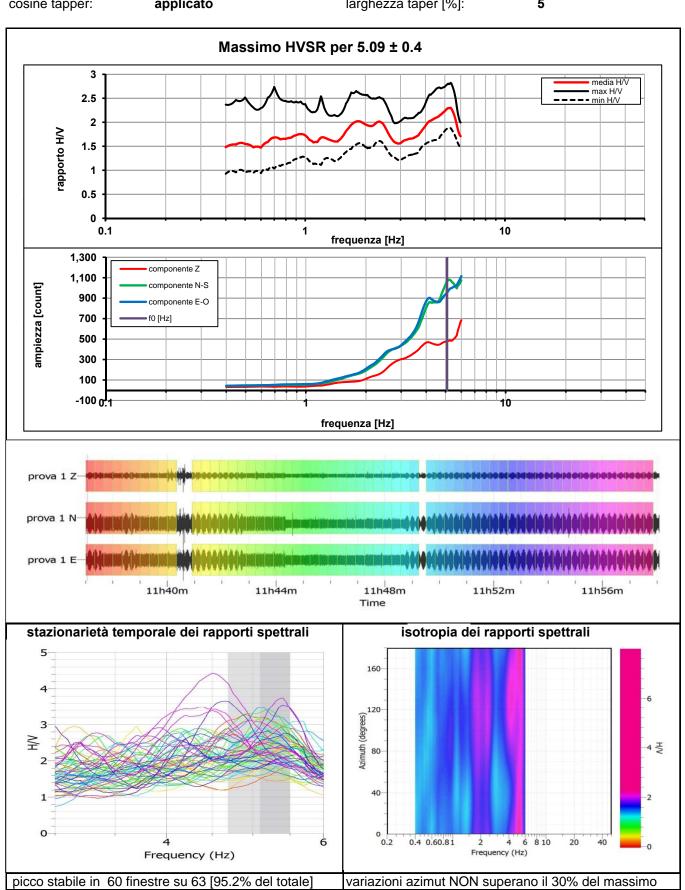
profon. contrasto: 5-10 m
[qualche metro]
contrasto: BASSO

SEANO - prova 8 bis

località:	SEAN	10				data:		08/08/2012	ora:		11:37:50
operatore:	Peruz	zi - N	Mant	tovan	i						
latitudine:	43,83	0351	N			longitudine:		11,01272E	quota s.l.m	.: 50 m	
nome stazione:	prova	8 b	is			orientamento strum	en	to rispetto al Nord:	320°		
tipo stazione:	SARA	SR	04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file: MT_20120808_113750.SAF											
gain:						freq.campion.[Hz]:		300	durata rec.	[mm:ss]:	21.08
a andizioni	VENT	VENTO assente X debole (5m/s) medio forte)	
meteo	condizioni meteo PIOGGIA X assente debole medio forte Misurato)		
	temperatura (°C approx) Note:										
natura terreno appoggio	X terra X dura ghiaia sabbia roccia X erba X bassa alta alta										
	Xs	suolo a	asciu	tto	8	suolo umido		Note:			
accoppiamento	artific	iale	al sı	iolo:		X no	si	, tipologia			
densità edifici:	r	nessui	no Z	X dis	persi	addensati	al	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]	1	fonti di rumore mo (fabbriche,cantieri lavo no X si, tipo		rsi d'acqua, (,
automobili	Х							strutture nelle vicii	l ª	lberi, sondaggi, e	
camion	Х							(descrizione, altezza, dist	tanza) s	trutture sotterrane	ee,
pedoni	Х										
altro											

note:

- presenza di telai a circa 100 m (disturbo su freq circa 7 Hz) copertura: lacustre? bedrock: C. Caotico?


SEANO - prova 8 bis

Inizio registrazione [data ora]: 08/08/2012 11:37:50

Lunghezza della registrazione [s] 1265 Lunghezza tot. finestre analizzate [s] 1200

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	CRITERI PROGETTO SESAME										
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]										
i R	$f_0 > 10 / L_w$	ere soudis	5.10		0.50	ok					
	$n_c(f_0) > 200$			>							
ii R		0.511_	6114	>	200	ok					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} > 0.5f_{0} < f$		eccede	su	317	ok					
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < f$		0 R abiana (C	•	punti						
	Criteri per un p [è stato escluso il criterio vC: alı		_	-	sfattil						
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	Julia	no					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no					
iii C	$A_0 > 2$	7-0 -	2.27	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	9%	0.051	<	0.05	no					
v C	$\sigma_f < \varepsilon(f_0)$		0.40682	<	0.25475	no					
vi C	$\sigma_{A}(f_{0}) < \theta(f_{0})$		1.226	<	1.58	ok					
	ALO LO										
L _w	L _w larghezza della finestra [s]										
	numero di finiestre utilizzate per l'an	nalisi [num]				60					
$n_c = L_w n_w t_0$	numero di clicli significativi [num]					6114					
f ₀	frequenza di picco H/V [Hz]					5.10					
f	frequenza		· · · · · · · · · · · ·			,					
$\sigma_{ m f}$	deviazione standard della frequenza					± 0.4					
	valore soglia per condizioni di stabil) - vedi tabe	ella sotto		0.25					
A ₀	ampiezza del picco H/V alla frequen					2.27					
	ampiezza della curva H/V alla frequ										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A										
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$										
$\sigma_{A}(f_{0})$											
$\sigma_{A}(f)$											
$\sigma_{\text{logH/V}}(extsf{f})$											
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58										
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58					
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

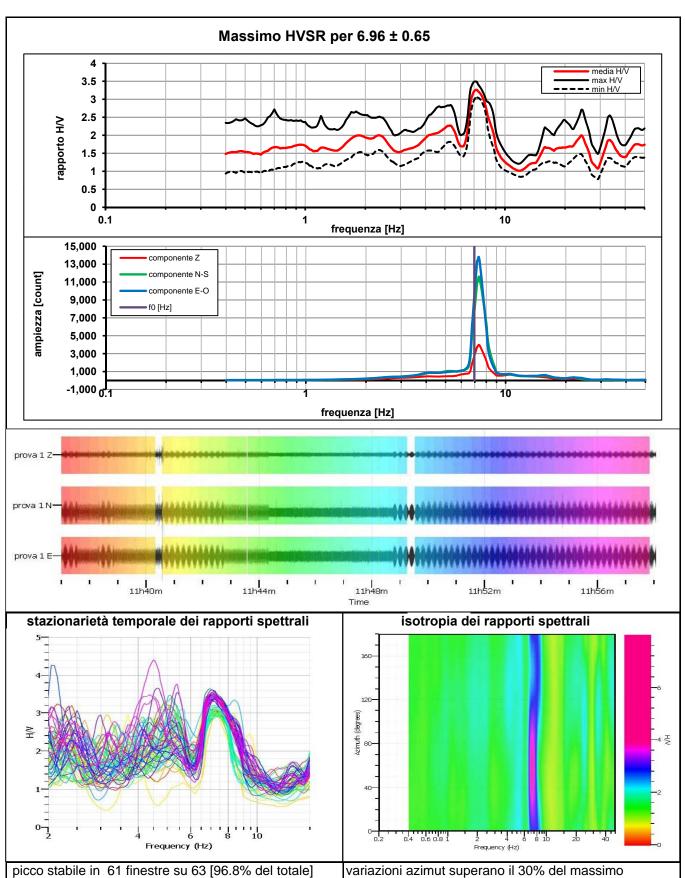
Valutazioni qualitative profon. contrasto:

profon. contrasto: 10-20 m
[decine di metri]
contrasto: BASSO

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

copertura: lacustre? bedrock: C. Caotico?

Elaborazione spettro completo


SEANO - prova 8 bis

Inizio registrazione [data ora]: 08/08/2012 11:37:50

Lunghezza della registrazione [s] 1265 Lunghezza tot. finestre analizzate [s] 1220

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing:
cosine tapper:proportional
applicatocostante di smoothing [%]:10.00larghezza taper [%]:5

CRITERI PROGETTO SESAME										
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]										
		ere soaais			0.50	a la				
i R	f ₀ > 10 / L _w		6.97	>	0.50	ok				
ii R	$n_c(f_0) > 200$		8499	>	200	ok				
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0$		eccede	su	287	ok				
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f$		0		punti					
	Criteri per un p [è stato escluso il criterio vC: aln		-	-	ofo#:1					
: 0	1				Siatuj	o le				
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		3.181	Hz		ok				
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	52.636	Hz		ok				
iii C	A ₀ > 2		3.20	>	2	ok				
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^{\circ}$	<u>%</u>	0.033	<	0.05	ok				
v C	$\sigma_f < \varepsilon(f_0)$		0.65925	<	0.34831	no				
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.069 < 1.58									
L _w larghezza della finestra [s]										
n _w										
						8499				
$n_c = L_w n_w f_0$ numero di clicli significativi [num] f_0 frequenza di picco H/V [Hz]										
f	frequenza									
$\sigma_{\rm f}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.65				
$\varepsilon(f_0)$	valore soglia per condizioni di stabili			ella sotto		0.35				
A_0	ampiezza del picco H/V alla frequen					3.20				
A _{H/√} (f)	ampiezza della curva H/V alla freque	enza f			······································					
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2							
f ⁺	frequenza fra f_0 e 4 f_0 per la quale $A_{H/V}(f^+) < A_0/2$									
$\sigma_{A}(f_{0})$	deviazione standard di A ₀									
$\sigma_{A}(f)$										
$\sigma_{\text{logH/V}}(f)$	_{ರlogH/v} (f) deviazione standard della curva log A _{H/v} (f)									
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto									
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0				
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀				
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58				
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2				

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	no
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

Valutazioni qualitative
profon. contrasto: 10-20 m

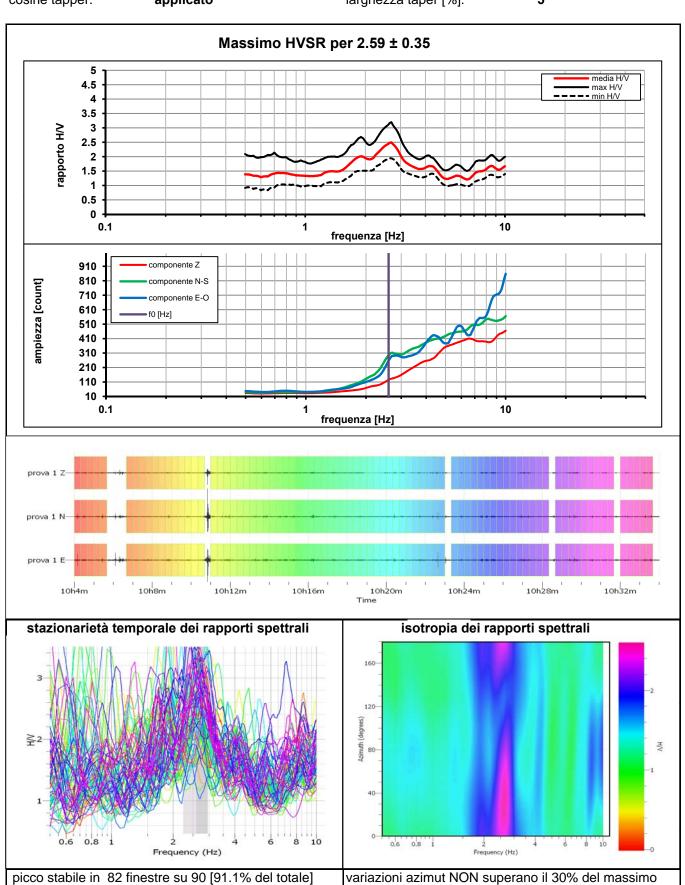
[decine di metri]

SEANO - prova 9 ter

località:	SEA	NO				data:		12/08/2012	ora:		10:04:16
operatore:	Peru	ızzi									
latitudine:	43,8	2870	N			longitudine:		11,01162E	quota s.l.	.m.: 64	
nome stazione:	prov	/a 9 t	er			orientamento strume	nt	to rispetto al Nord:	87°		
tipo stazione:	SAF	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	0812	2_100	416.	SAF					
gain:						freq.campion.[Hz]:		300	durata re	ec. [mm:ss]:	30.00
condizioni	VEN	ITO GGIA		ass		debole (5m/s)	forte		rato		
meteo	temperatura (°C approx) Note:										
natura terreno appoggio	X	terra		dura soffice cem	e] nento	ghiaia sabbia	L	roccia vimentato altro	X	erba X bas	
	X	suolo	asciu	tto	s	suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessı	uno	X dis	persi	addensati	alt	ro, tipologia			
transienti:	nessano	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipo	ri, pompe,		ecc.):
automobili		X				10		strutture nelle vicir	nanze:	alberi, sondaggi, e	difici, ponti,
camion	X							(descrizione, altezza, dist	anza)	strutture sotterrane	ee,
pedoni	X										
altro											

note:

copertura: lacustre? bedrock: C. Caotico?


SEANO - prova 9 ter

Inizio registrazione [data ora]: 12/08/2012 10:04:16

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1640

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]											
: D	$f_0 > 10 / L_w$	sere soddisi	- I		0.50	o k					
i R	·		2.60	>	0.50	ok					
ii R	$n_c(f_0) > 200$		4257	>	200	ok					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		eccede	su	462	ok					
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0 D abiava (C)		punti						
	Criteri per un ¡ [è stato escluso il criterio vC: al			-	ofattil						
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	siatuj	no					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		6.358	Hz		ok					
	esiste in [i ₀ , 4i ₀] $A_{H/V}(i)$ $A_0 > 2$	· A ₀ / Z									
iii C	•		2.44	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$;%	0.039	<	0.05	ok					
v C	$\sigma_f < \varepsilon(f_0)$		0.35656	<	0.12978	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.283	<	1.58	ok					
L _w	larghezza della finestra [s]					20					
n _w	numero di finiestre utilizzate per l'ar	nalisi [num]				82					
$n_c = L_w n_w f_0$	numero di clicli significativi [num]					4257					
f_0	frequenza di picco H/V [Hz]					2.60					
f	frequenza										
$\sigma_{\!\scriptscriptstyle f}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.35					
ε(f ₀)	valore soglia per condizioni di stabil					0.13					
A_0	ampiezza del picco H/V alla frequer					2.44					
$A_{H/V}(f)$	ampiezza della curva H/V alla frequ	ienza f									
f [–]	frequenza fra f _o /4 e f _o per la quale <i>A</i>	$A_{H/V}(f^{-}) < A_0$	/2								
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$										
$\sigma_{A}(f_{0})$	deviazione standard di A ₀										
$\sigma_{A}(f)$											
$\sigma_{\text{logH/V}}(\text{f})$											
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto										
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	\3, -										
	$\theta(f_0) \text{ for } s_A(f_0)$ $\log \theta(f_0) \text{ for } \sigma_{\log H/V}(f_0)$	3 0.48	2.5 0.4	2 0.3	1.78 0.25	1.58 0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

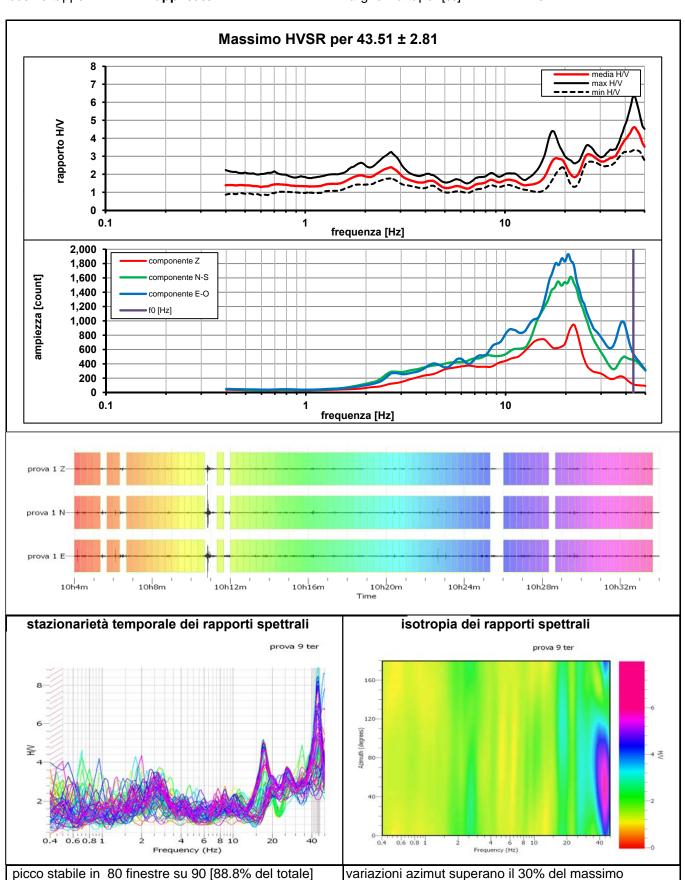
CLASSE	Α
SOTTOCLASSE	Tipo 1

Valutazioni qualitative

contrasto:		BASSO	
	[decine	di metr	ij
profon. contras	to:	30-50 m	

copertura: alteraz.-lacustre ? bedrock: C. Caotico ?

Elaborazione spettro completo


SEANO - prova 9 ter

Inizio registrazione [data ora]: 12/08/2012 10:04:16

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1600

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PR	OGETTO SESAME										
	Criteri per una cu			[R]							
[devono essere soddisfatti tutti] i R											
i R	$f_0 > 10 / L_w$ 43.52 > 0.50										
ii R	$n_c(f_0) > 200$ 69626 > 200										
iii R	iii R $\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ eccede su										
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f < 2f_{0} < f_{0} < $		0		punti	ok					
	Criteri per un p		_	-	of o 44:1						
: 0	[è stato escluso il criterio vC: ali				अ वरा ।	a le					
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		40.320	Hz		ok					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <	A ₀ / 2	0.000	Hz		no					
iii C	A ₀ > 2		4.54	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.023	<	0.05	ok					
v C	$\sigma_f < \varepsilon(f_0)$		2.81705	<	2.17581	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.380	<	1.58	ok					
L _w larghezza della finestra [s]											
n _w numero di finiestre utilizzate per l'analisi [num]											
	numero di clicli significativi [num]					69626					
f_0	frequenza di picco H/V [Hz]					43.52					
f	frequenza										
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 2.81					
ε(f ₀)	valore soglia per condizioni di stabil	ità $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe			2.18					
A_0	ampiezza del picco H/V alla frequer					4.54					
A _{H/∨} (f)	ampiezza della curva H/V alla frequ	enza f									
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$A_{H/V}(f^{}) < A_0$	/2								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _t	$A_{1/1}(f^+) < A_{0/1}$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.37					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)										
$\sigma_{\text{logH/V}}(f)$	_{ರlogH/v} (f) deviazione standard della curva log A _{H/v} (f)										
$\theta(f_0)$	valore soglia per la condizione di sta	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	lto	1.58					
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58					
	Log θ(f ₀) for $σ_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2										

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

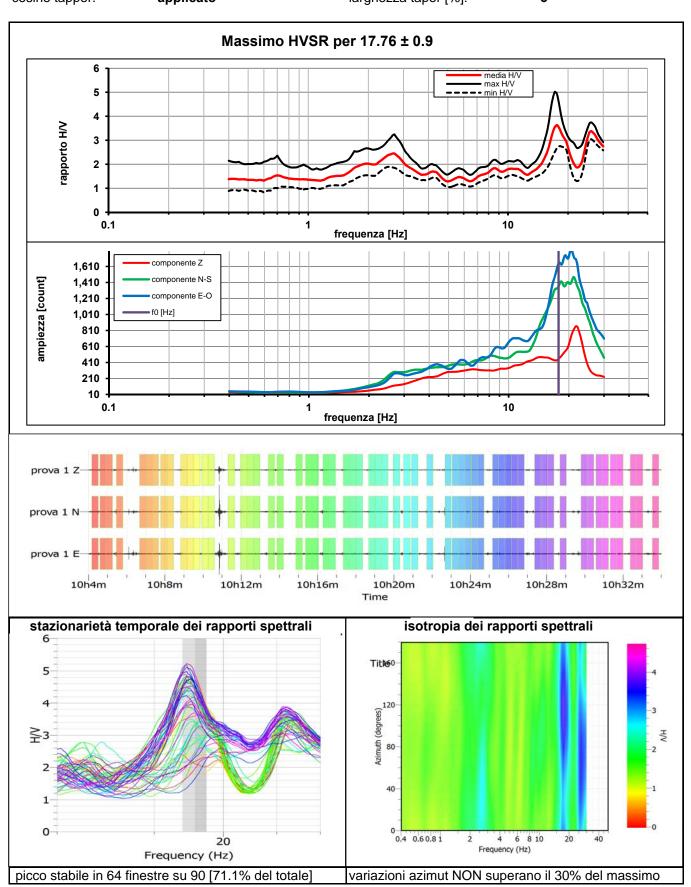
CLASSE	В
SOTTOCLASSE	Tipo 1

Valutazioni qualitative

profon. contrasto: < 5 m
[qualche metro]
contrasto: ALTO

copertura: lacustre alterato ? | bedrock: lacustre ?

Elaborazione picco superiore


SEANO - prova 9 ter

Inizio registrazione [data ora]: 12/08/2012 10:04:16

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1180

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PROGETTO SESAME											
	Criteri per una ci			[R]							
	[devono essere soddisfatti tutti] i R										
i R	f ₀ > 10 / L _w 17.77 > 0.50										
ii R	$n_c(f_0) > 200$		20968	>	200	ok					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	282	ok								
III IX	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	< 0.5Hz	0	su	punti	OK					
	Criteri per un p		-	-							
	[è stato escluso il criterio vC: ali			ssere soddi:	sfatti]						
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		32.204	Hz		ok					
ii C	esiste f^+ in $[f_0, 4f_0] \mid A_{H/V}(f^+) <$: A ₀ / 2	0.000	Hz		no					
iii C	A ₀ > 2		3.59	>	2	ok					
iv C	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5$;%	0.464	<	0.05	no					
v C	$\sigma_f < \varepsilon(f_0)$		0.90170	<	0.88849	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.363 < 1.58										
L _w larghezza della finestra [s]											
n _w	numero di finiestre utilizzate per l'ar	nalisi [num]				20 59					
	numero di clicli significativi [num]					20968					
f ₀	frequenza di picco H/V [Hz]					17.77					
f	frequenza										
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.9					
$\varepsilon(f_0)$	valore soglia per condizioni di stabil					0.89					
A_0	ampiezza del picco H/V alla frequer					3.59					
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f									
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$\Lambda_{H/V}(f^{-}) < A_0$	/2								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _I	$_{H/V}(f^+) < A_0$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.36					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)										
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log	A _{H/V} (f)									
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58										
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58					
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

profon. contrasto: 5-10 m
[qualche metro]
contrasto: ALTO

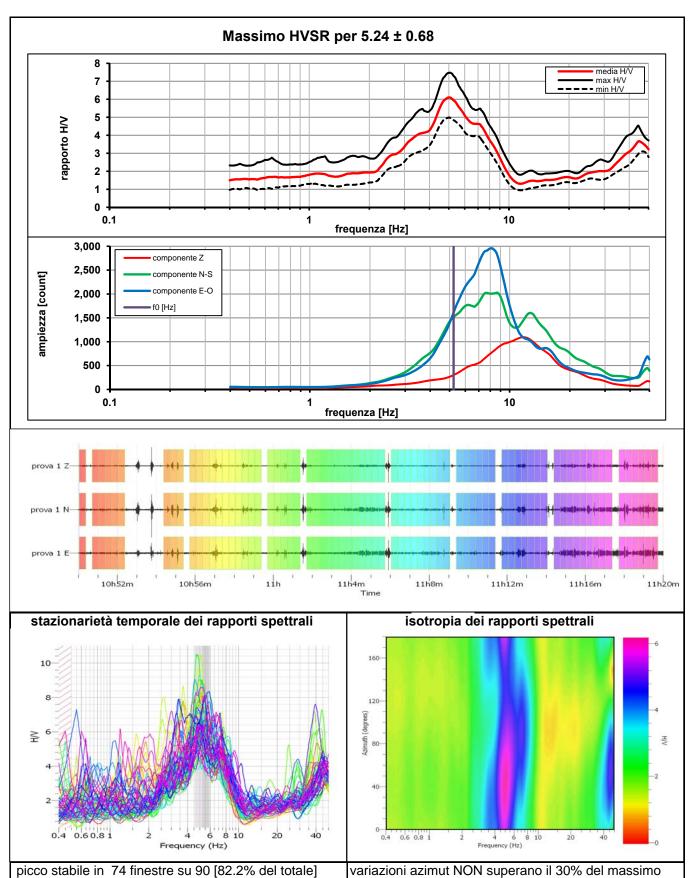
SEANO - prova 10 bis

località:	SEA	NO				data:	12/0	8/2012	ora:		10:50:46
peratore: Peruzzi											
latitudine:	43,8	2624	N			longitudine:	11,0	1370E	quota s.l.m	n.: 51.0	
nome stazione:	prov	/a 10	bis			orientamento strume	nto rispet	to al Nord:	175°		
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	velocime	tri 4,5 Hz			
nome file:	MT_	2012	20812	2_105	046	SAF					
gain:						freq.campion.[Hz]:	300		durata rec.	[mm:ss]:	30.00
	VEN	ITO	>	ass	ente	debole (5m/s)	medio	forte	Misurat	0	
condizioni meteo	PIO	GGIA)	ass	ente	debole medio	forte		Misurate	0	
	temp	perati	ura (°	°C ap	prox)	Note: _				
natura terreno appoggio							ssa				
	X	suolo	asciu	tto		suolo umido	Note: _				
accoppiamento	artifi	ciale	al s	uolo:		X no	si, tipologia_				
densità edifici:		nessı	uno	X dis	persi	addensati	altro, tipolog	ia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		rumore mo he,cantieri lavo		rsi d'acqua, e	ecc.):
automobili		X				12		re nelle vici	۱ ۹	alberi, sondaggi, e	
camion	X					12		one, altezza, dis		strutture sotterrane	e,
pedoni		X				12		h= 4-5 m dist=			
altro							aiboii	n- + m dist-	- 0 111		

note:

- linea di media tensione a circa 25 m
- verso la fine della registrazione un trattore ha cominciato a lavorare ad una distanza di circa 50-80 m

copertura: alluvioni recenti bedrock: Macigno Londa


SEANO - prova 10 bis

Inizio registrazione [data ora]: 12/08/2012 10:50:46

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1480

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	OGETTO SESAME					CRITERI PROGETTO SESAME							
	Criteri per una curva HVSR affidabile [R]												
i R f ₀ > 10 / L _w 5.24 > 0.50 ok													
ii R													
II K													
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ eccede Su												
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5f_0 < f < 2f_0$ if $f_0 < 0.5f_0 < 0.5f_0$		0 P chiaro IC	1	punti								
	[è stato escluso il criterio vC: aln		-	-	sfatti]								
i C	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		2.751	Hz		ok							
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		8.819	Hz		ok							
iii C	$A_0 > 2$		5.98	>	2	ok							
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^{\circ}$	%	0.044	<	0.05	ok							
v C	$\sigma_f < \varepsilon(f_0)$		0.68347	<	0.26210	no							
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.224	<	1.58	ok							
L _w larghezza della finestra [s]													
n _w numero di finiestre utilizzate per l'analisi [num]													
	numero di clicli significativi [num]					7758							
f ₀	frequenza di picco H/V [Hz]					5.24							
f	frequenza					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
$\sigma_{\scriptscriptstyle{\mathrm{f}}}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.68							
ε(f ₀)	valore soglia per condizioni di stabili	tà $\sigma_{\rm f} < \varepsilon(f_0)$) - vedi tabe	ella sotto		0.26							
A_0	ampiezza del picco H/V alla frequen	za f ₀				5.98							
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f											
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A ₁												
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _H	$_{1/V}(f^+) < A_{0/V}$	/2			,							
$\sigma_A(f_0)$	deviazione standard di A ₀					± 1.22							
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)	A (6)											
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log		~/f. \										
$\theta(f_0)$	valore soglia per la condizione di sta	ibilita $\sigma_A(t)$	< θ(f ₀) - vec			1.58							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0							
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀							
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58							
Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2													

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statstica ^(*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

Valutazioni qualitative

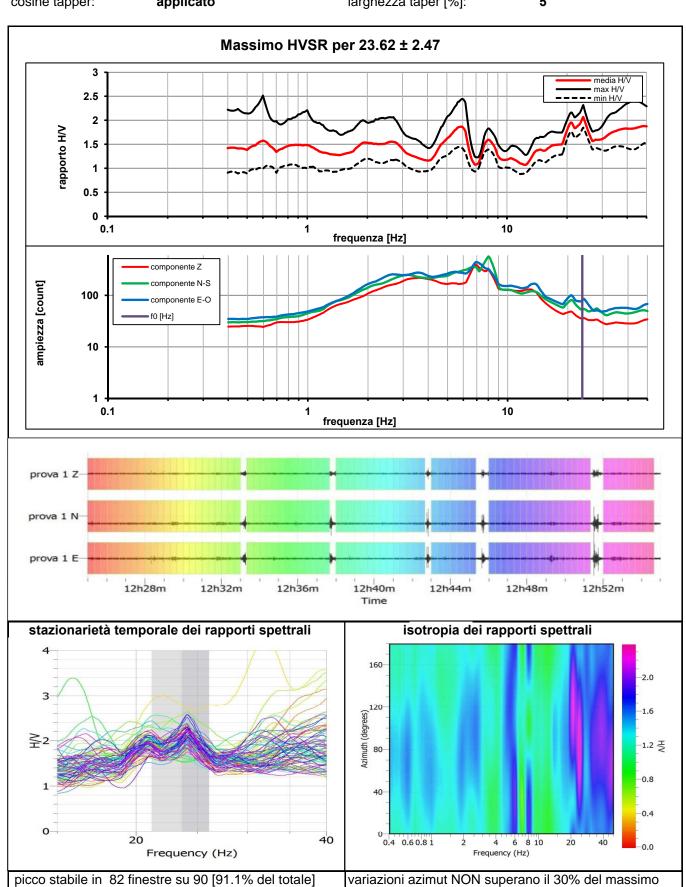
profon. contrasto: 10-20 m
[decine di metri]
contrasto: ALTO

SEANO - prova 11

località:	SEA	NO				data:	03/08/2012	ora:	12:25:10
operatore:	Man	tovar	ni		<u> </u>	•			
latitudine:	43,8	2718	N			longitudine:	10,99683E	quota s.l.m.: 9	06,3
nome stazione:	prov	/a 11				orientamento strume	nto rispetto al Nord:	0°	
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	velocimetri 4,5 Hz		
nome file:	MT_	2012	0803	3_122	510.	SAF			
gain:						freq.campion.[Hz]:	300	durata rec. [mm	n:ss]: 30.00
condizioni meteo	VEN	ITO GGIA		ass	ente ente	X debole (5m/s) debole medio	medio forte	Misurato	
meteo	temp	temperatura (°C approx) Note:							
natura terreno appoggio	X terra X dura soffice ghiaia sabbia roccia x erba x bassa alta alta asfalto cemento calcestruzzo pavimentato altro								
	X	suolo	asciu	tto	s	suolo umido	Note:		
accoppiamento	artifi	ciale	al sı	uolo:		X no	si, tipologia		
densità edifici:		nessı	uno	X dis	persi	addensati	altro, tipologia		
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]	fonti di rumore mo (fabbriche,cantieri lavo no si, tipo		
automobili		X				6	strutture nelle vici	aibeii, s	sondaggi, edifici, ponti,
camion	X						(descrizione, altezza, dis	Lariza)	e sotterranee,
pedoni	X						- olivi H = 3-4 m dis	st = 3-4 m	
altro									

note:

copertura: colluvium/detrito bedrock: F. Sillano


SEANO - prova 11

Inizio registrazione [data ora]: 03/08/2012 12:25:10

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1640

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	OGETTO SESAME											
Criteri per una curva HVSR affidabile [R]												
	[devono essere soddisfatti tutti]											
i R	$f_0 > 10 / L_w$ 23.62 > 0.50 ok											
ii R	$n_c(f_0) > 200$		38743	>	200	ok						
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < $		eccede	su	287	ok						
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f < 2f_{0} < f_{0} < $		0	_	punti							
	Criteri per un p [è stato escluso il criterio vC: alı		-	-	ofottil							
: 0					siaiiij							
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		0.000	Hz		no						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	0.000	Hz		no						
iii C	A ₀ > 2		2.00	>	2	no						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.020	<	0.05	ok						
v C	$\sigma_f < \varepsilon(f_0)$		2.47470	<	1.18120	no						
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.120	<	1.58	ok						
L _w larghezza della finestra [s]												
n _w												
	n_w numero di finiestre utilizzate per l'analisi [num] $n_c = L_w n_w f_0$ numero di clicli significativi [num]											
f ₀	frequenza di picco H/V [Hz]					23.62						
f	frequenza											
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 2.47						
ε(f ₀)	valore soglia per condizioni di stabil					1.18						
A_0	ampiezza del picco H/V alla frequer		iii			2.00						
A _{H/V} (f)	ampiezza della curva H/V alla frequ	enza f										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$A_{H/V}(f^{-}) < A_0$	/2									
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A ₁	$_{H/V}(f^+) < A_{0}$	/2									
$\sigma_{A}(f_{0})$	deviazione standard di A ₀											
$\sigma_{A}(f)$	deviazione standard di A _{H/v} (f)											
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)										
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58						
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	107											
	$\frac{\theta(f_0) \text{ for } s_A(f_0)}{\text{Log } \theta(f_0) \text{ for } \sigma_{logH/V}(f_0)}$	3	2.5	2	1.78	1.58						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

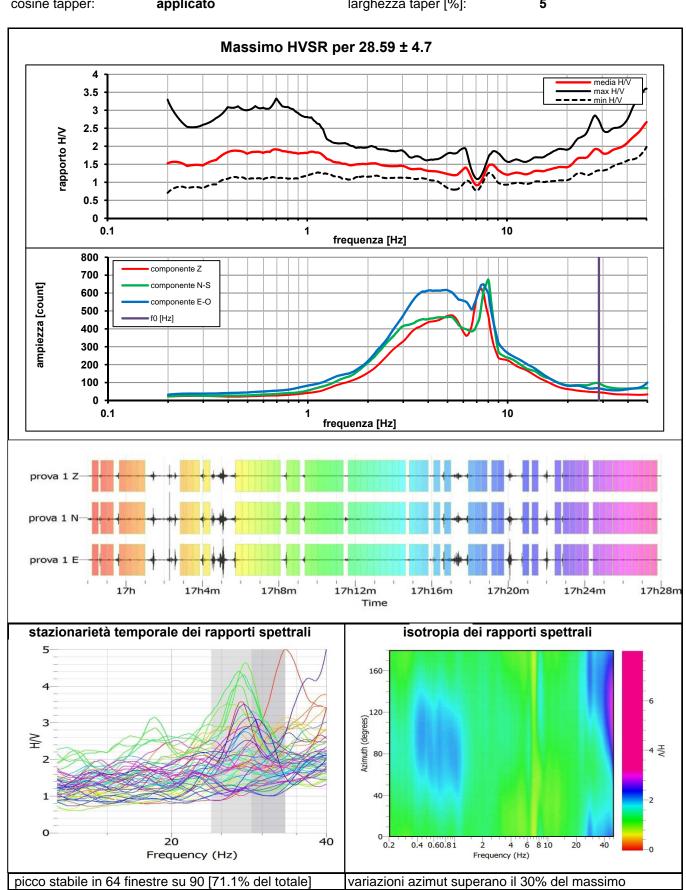
CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative
profon. contrasto: < 5 m
[qualche metro]
contrasto:

SEANO - prova 12

località:	SEA	NO				data:		02/08/2012	ora:		16:58:08
operatore:	Man	tovar	ni								
latitudine:	43,8	2458	N			longitudine:		10,99969E	quota s.l.m	i.: 110,0	
nome stazione:	prov	/a 12				orientamento strume	ent	to rispetto al Nord:	350°		
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz			
nome file:	MT_	2012	20802	2_165	5808 .	SAF					
gain:						freq.campion.[Hz]:		300	durata rec.	[mm:ss]:	30.00
	VEN	ITO		ass	ente	debole (5m/s) X	m	nedio forte	Misurate	o _ raffiche _	
condizioni meteo	PIO	GGIA)	ass	ente	debole medio		forte	Misurato	o	
	temp	temperatura (°C approx) Note:									
natura terreno appoggio	X terra X dura soffice ghiaia sabbia roccia X erba X bassa alta alta asfalto cemento calcestruzzo pavimentato altro								a		
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	uolo:		X no	si,	tipologia			
densità edifici:		nessu	uno	dis	persi	addensati	alt	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo no si, tipo	ri, pompe, co		ecc.):
automobili			X			8		strutture nelle vicir	1 5	alberi, sondaggi, e	
camion		X				8		(descrizione, altezza, dist	lariza)	strutture sotterran	ee,
pedoni	X							olivi $H = 3-4 \text{ m}$ dist	= 3-4 m		
altro											
		CONTRACT V	1		31-10	THE REPORT OF THE PARTY OF THE			note:		

copertura: colluvium/detrito bedrock: C. Caotico


SEANO - prova 12

Inizio registrazione [data ora]: 02/08/2012 16:58:08

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1240

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	ROGETTO SESAME												
Criteri per una curva HVSR affidabile [R]													
i R	[devono essere soddisfatti tutti] $\mathbf{f_0 > 10 / L_w} \qquad 28.60 > 0.50$												
	· · · · · · · · · · · · · · · · · · ·												
ii R	$n_c(f_0) > 200$		35463	>	200	ok							
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 < f $		eccede	su	227	ok							
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f < 2f_0 \text{ if } f_0 < f < 2f_0 \text{ or } f < f < f < f < f < f < f < f < f < f$		0		punti								
	Criteri per un p [è stato escluso il criterio vC: alr		_	-	efattil								
i C	esiste f in [f ₀ /4, f ₀] A _{H/V} (f) <		7.265	Hz	siattij	ok							
ii C													
	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) < A_{H/V}(f^+)$	A ₀ / Z	0.000	Hz		no							
iii C	A ₀ > 2		1.91	>	2	no							
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.081	<	0.05	no							
v C	$\sigma_f < \varepsilon(f_0)$		4.70480	<	1.42996	no							
vi C	$\sigma_{A}(f_0) < \theta(f_0)$	$\sigma_{A}(f_0) < \theta(f_0)$ 1.468 < 1.58											
L _w larghezza della finestra [s]													
n _w													
$n_c = L_w n_w f_0$	$n_c = L_w n_w f_0$ numero di clicli significativi [num]												
f ₀	frequenza di picco H/V [Hz]					28.60							
f	frequenza												
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 4.7							
$\varepsilon(f_0)$	valore soglia per condizioni di stabili					1.43							
A_0	ampiezza del picco H/V alla frequen					1.91							
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f											
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2										
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _t	$A_{1/V}(f^+) < A_{0/V}$	/2										
$\sigma_{A}(f_{0})$	deviazione standard di A ₀												
$\sigma_{A}(f)$	deviazione standard di A _{H/v} (f)												
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)											
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto												
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0							
	(0)												
	$\theta(f_0)$ for $s_A(f_0)$ Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	3	2.5	2	1.78 0.25	1.58 0.2							

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

Valutazioni qualitative
profon. contrasto: < 5 m
[qualche metro]
contrasto:

SEANO - prova 13

località:	SEA	NO				data:		03/08/2012	ora:		11:15:15	
operatore:	Man	Mantovani										
latitudine:	43,8	2148	N			longitudine:		11,01985E	quota s.l.m.:	143,0		
nome stazione:	prov	⁄a 13				orientamento stru	ımer	nto rispetto al Nord:	160°			
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	v	elocimetri 4,5 Hz				
nome file:	MT_20120803_111515.SAF											
gain:						freq.campion.[Hz]:	300	durata rec. [m	nm:ss]:	30.00	
	VEN	ТО		ass	ente	X debole (5m/s)	r	nedio forte	Misurato _			
condizioni meteo	PIO	GGIA	\	ass	ente	debole me	edio	forte	Misurato _			
	temp	erati	ura (°	°C ap	prox)		Note:				
natura terreno appoggio	X terra X dura soffice ghiaia sabbia roccia x erba x bassa alta alta asfalto cemento calcestruzzo pavimentato altro Note:											
accoppiamento		,				X no	s	, tipologia				
densità edifici:		nessı	uno	X dis	persi	addensati	а	ltro, tipologia				
automobili camion	nessano	X pochi	moderati	molti	molto densi	distanza [m] 3 3		fonti di rumore me (fabbriche,cantieri lav no si, tip strutture nelle vic (descrizione, altezza, di	ologiainanze:		edifici, ponti,	
pedoni		X				3						
altro		765		372134	C ARL							

- difficoltoso trovare un punto adatto per effettuare la prova a causa delle recinzioni alle proprietà private o per la presenza di oliveti o vigne coltrati; individuato un ristretto spazio sotto un muro di recinzione (vedi foto) nei pressi della strada copertura: colluvium/detrito bedrock: Macigno Londa


SEANO - prova 13

Inizio registrazione [data ora]: 03/08/2012 11:15:15

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1680

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]											
i R	$f_0 > 10 / L_w$ 32.07 > 0.50 ok										
ii R											
11 1	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0$	^ EU-7	eccede	>	200 173	ok					
iii R				su		ok					
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f$ Criteri per un p		0 R chiaro [C	1	punti						
	[è stato escluso il criterio vC: aln		_	-	sfatti]						
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$	A ₀ / 2	0.000	Hz	_	no					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no					
iii C	A ₀ > 2		2.14	>	2	ok					
iv C	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5^{\circ}$	%	0.043	<	0.05	ok					
v C	$\sigma_f < \varepsilon(f_0)$		3.27150	<	1.60345	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.683 < 1.58										
L _w larghezza della finestra [s]											
n _w											
**	n _w numero di finiestre utilizzate per l'analisi [num] _c = L _w n _w f ₀ numero di clicli significativi [num]										
f ₀	frequenza di picco H/V [Hz]					53876 32.07					
f	frequenza										
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 3.27					
ε(f ₀)	valore soglia per condizioni di stabili			ella sotto		1.60					
A_0	ampiezza del picco H/V alla frequen					2.14					
A _{H/∨} (f)	ampiezza della curva H/V alla freque	enza f									
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A ₁	$_{H/V}(f^{-}) < A_0$	/2								
f +	frequenza fra f ₀ e 4f ₀ per la quale A _H	$A_{1/1}(f^+) < A_0$	/2								
$\sigma_A(f_0)$	deviazione standard di A ₀					± 1.68					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)	. (5)									
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log		0/1)	r (-b alla aa							
$\Theta(f_0)$	valore soglia per la condizione di sta					1.58					
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀ 2.5	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$ Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					
	Log o(10) for GlogH/V(10)	0	U. .	0.0	0.20	<u> </u>					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

valutazioni qualitative)
profon. contrasto:	< 5 m
[qualc	he met

BASSO

contrasto:

STATION INFORMATION

Station code: prova 14

Model: SARA GEOBOX

Sensor: SARA SS45PACK (integrated 4.5 Hz sensors)

Notes: -

PLACE INFORMATION

Place ID: CARMIGNANO

Address: via del Granaio

Latitude: 43,81388N

Longitude: 011,03928E

Coordinate system: WGS84

Elevation: 53 m s.l.m.

Weather: sereno

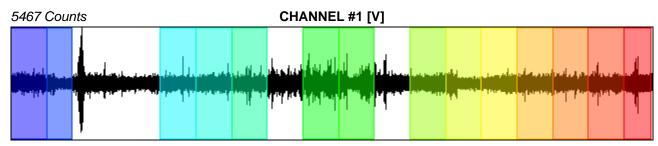
Notes: disturbi prodotti dal traffico su via del Granaio e dall'attività industriale

nei capannoni vicini

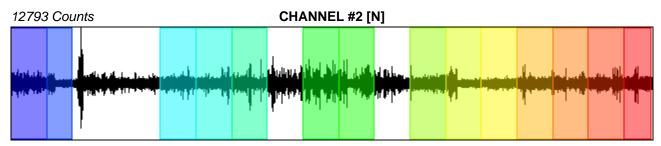
PHOTOGRAPHIC REFERENCES

SIGNAL AND WINDOWING

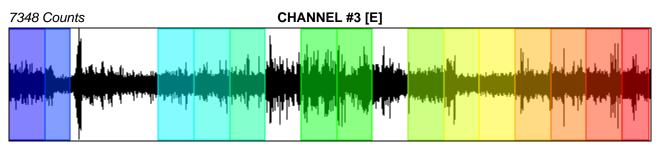
Sampling frequency: 100 Hz


Recording start time: 2015/01/28 15:31:39

Recording length: 30 min


Windows count: 14

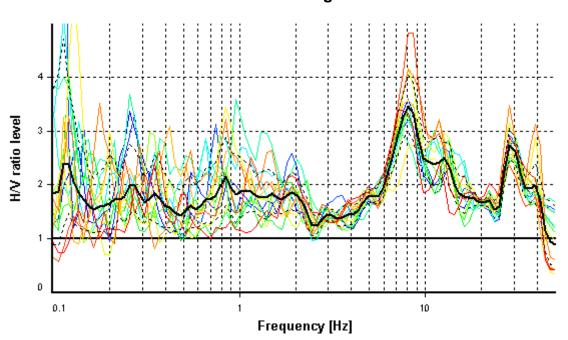
Average windows length: 96.19


Signal coverage: 74.81%

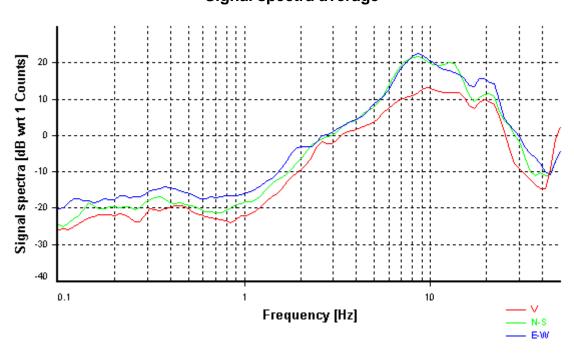
-4779 Counts

-10381 Counts

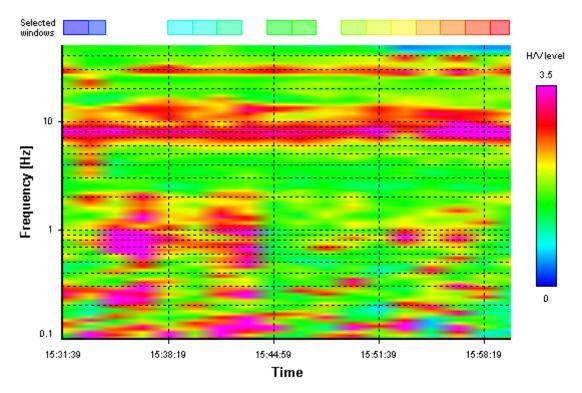
-7159 Counts

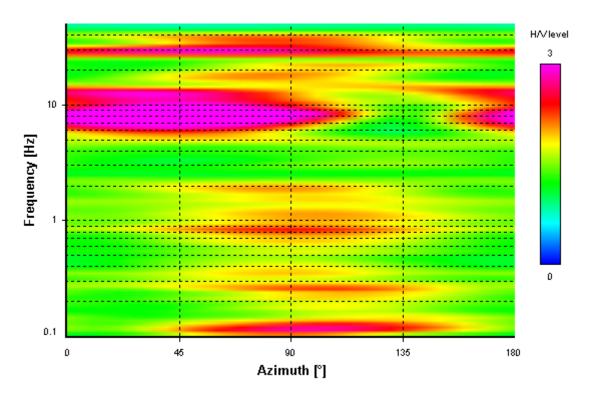

HVSR ANALYSIS

Tapering: Enabled (Bandwidth = 5%)


Smoothing: Konno-Ohmachi (Bandwidth coefficient = 40)

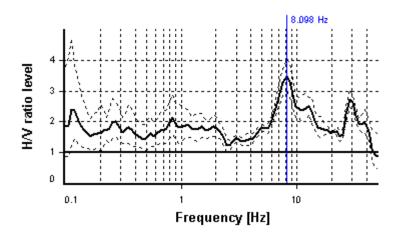
Instrumental correction: Disabled


HVSR average


Signal spectra average

HVSR time-frequency analysis (100 seconds windows)

HVSR directional analysis



SESAME CRITERIA

Selected f₀ frequency

8.098 Hz

 A_0 amplitude = 3.474 Average $f_0 = 8.360 \pm 0.913$

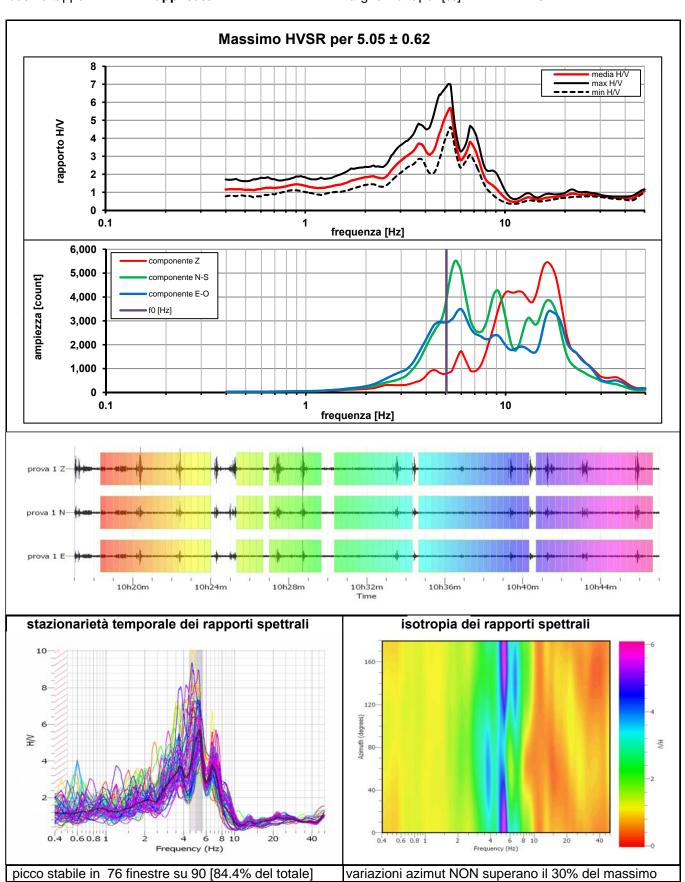
HVSR curve reliability criteria					
f ₀ > 10 / L _w	14 valid windows (length > 1.23 s) out of 14	OK			
n _c (f ₀) > 200	10904.39 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 23	Ok			
$\exists f \text{ in } [f_0/4, f_0] \mid A_{H/V}(f) < A_0$	/SR peak clarity criteria 4.60258 Hz	OF			
$\exists f^{+} \text{ in } [f_{0}, 4f_{0}] \mid A_{H/V}(f^{+}) < A_{0}$	18.31356 Hz	OK			
A ₀ > 2	3.47 > 2	Ok			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0% <= 5%	OK			
$\sigma_f < \varepsilon(f_0)$	0.91281 >= 0.40489	NC			
$\sigma_A(f_0) < \theta(f_0)$	1.1669 < 1.58	OK			
Overall criteria fulfillment					

località:	COMEA	NA			data:		16/08/2012	ora:	10:17:35
operatore:	Peruzzi								
latitudine:	43,8032	6N			longitudine:		11,06319E	quota s.l.m.: 36	
nome stazione:	prova 1				orientamento strur	nen	to rispetto al Nord:	78°	
tipo stazione:	SARA S	R04H	IS		tipo sensori:	٧	elocimetri 4,5 Hz		
nome file:	MT_201	20816	6_101	735.	SAF				
gain:					freq.campion.[Hz]:		300	durata rec. [mm	:ss]: 30.00
condizioni	VENTO)	X ass	ente	debole (5m/s)	m	nedio forte	Misurato	
meteo PIOGGIA X assente				ente	debole med	lio	forte	Misurato	
	temperatura (°C approx) Note:								
natura terreno appoggio asfalto cemento calcestruzzo pavimentato altro									
	X suol	o asciu	itto		suolo umido		Note:		
accoppiamento	artificial	e al s	uolo:		X no	si	, tipologia		
densità edifici:	ness	suno	dis	persi	X addensati	al	tro, tipologia		
transienti:	nessuno pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo no X si, tipo trasfor		
automobili	X			1	10		strutture nelle vici	nanze: alberi, so	ndaggi, edifici, ponti, sotterranee,
camion	Х						(descrizione, altezza, dis	tanza) strutture s	sotterranee,
pedoni	Х								
altro									
				HTT.		M III		1.	

note:

- telai a circa 50 m

MISURA RIPETUTA VEDI PROVA 9 copertura: alluvioni recenti bedrock: Macigno Londa


COMEANA - prova 1

Inizio registrazione [data ora]: 16/08/2012 10:17:35

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1520

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PR	OGETTO SESAME								
	Criteri per una curva HVSR affidabile [R]								
: D	[devono essere soddisfatti tutti] R								
i R	· ¨								
ii R	$n_{c}(f_{0}) > 200$		7684	>	200	ok			
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > f$	eccede	su	287	ok				
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f_{0}$		0		punti				
	Criteri per un pi [è stato escluso il criterio vC: aln			-	sfattil				
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		2.902	Hz	siattij	ok			
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		7.483	Hz		ok			
iii C	$A_0 > 2$	7.07.2	5.24	>	2	ok			
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^\circ$	/0	0.055	<	0.05	no			
v C	$\sigma_f < \varepsilon(f_0)$		0.62917	<	0.25278	no			
vi C	$\sigma_{\Delta}(f_0) < \theta(f_0)$		1.233	<	1.58	ok			
	71.07								
L _W	L _w larghezza della finestra [s]								
	numero di finiestre utilizzate per l'ana	alisi [Hulli]				76 7684			
f_0	numero di clicli significativi [num] frequenza di picco H/V [Hz]					5.06			
f	frequenza					J.00			
$\sigma_{ m f}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.62			
$\varepsilon(f_0)$	valore soglia per condizioni di stabilit	à σ, < ε(f₀) - vedi tabe			0.25			
A ₀	valore soglia per condizioni di stabilità $\sigma_f < \epsilon(f_0)$ - vedi tabella sotto ampiezza del picco H/V alla frequenza f_0								
A _{H/∨} (f)	ampiezza della curva H/V alla freque	nza f							
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A ₊	$_{\text{H/V}}(f^{-}) < A_0$	/2						
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀								
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)								
$\sigma_{\text{logH/V}}(\text{f})$) deviazione standard della curva log A _{H/V} (f)								
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 1.58								
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2			

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

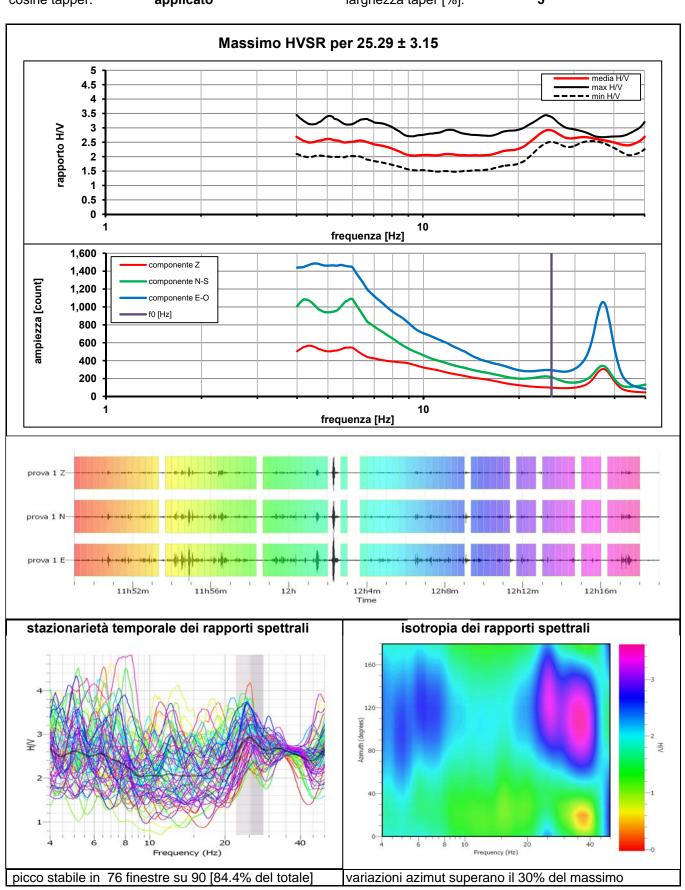
Valutazioni qualitative

contrasto:		ALT	
	decine	di n	netri]
profon. contras	to:	10-2	20 m

località:	CON	ΛΕΑΝ	ΙA			data:		16/08/2012	ora:	11:49:09
operatore:	Peru	ızzi								
latitudine:	43,80010N					longitudine: 11,05626E			quota s.l.m.: 66.5	
nome stazione:	prov	/a 2				orientamento stru	ner	to rispetto al Nord:	342°	
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	٧	elocimetri 4,5 Hz		
nome file:	MT_20120816_114909.SAF									
gain:						freq.campion.[Hz]		300	durata rec. [mm:ss]:	30.00
	VEN	ITO		ass	ente	X debole (5m/s)	r	nedio forte	Misurato: rafficato	
condizioni meteo	PIO	GGIA	X	ass	ente	debole med	lio	forte	Misurato	
	temperatura (°C approx) Note:									
natura terreno appoggio	X terra X dura ghiaia sabbia roccia X erba X bassa alta alta									
	X	suolo	asciu	tto		suolo umido		Note:		
accoppiamento	artifi	ciale	al sı	uolo:		X no	s	, tipologia		
densità edifici:	X	nessı	uno	dis	persi	addensati	а	tro, tipologia		
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]			pnocromatico ori, pompe, corsi d'acqua ologia:	,
automobili		X				8-10 m		strutture nelle vici	albert, sortdaggi	, edifici, ponti,
camion	X						_	(descrizione, altezza, dis		anee,
pedoni	X						_	- olivi h=2 m dist= 2	2-3 m	
altro										

note: MISURA RIPETUTA VEDI PROVA n.10

copertura: lacustre? bedrock: C.Caotico?


COMEANA - prova 2

Inizio registrazione [data ora]: 16/08/2012 11:49:09

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1520

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	OGETTO SESAME							
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]								
i R	$f_0 > 10 / L_w$	ere soddis	25.30		0.50	ok		
	$n_c(f_0) > 200$			>	0.50	ok		
ii R			38453	>	200	ok		
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 0.5f_0 < f < 2f_0 > 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < $	eccede	su	544	ok			
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0	_	punti			
	Criteri per un p [è stato escluso il criterio vC: alı		_	-	sfattil			
i C	esiste f in [f ₀ /4, f ₀] A _{H/V} (f) <		0.000	Hz	Siatuj	no		
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz				
	$A_0 > 2$	A ₀ / Z			2	no		
iii C	·	0.4	2.92	>	2	ok		
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	<u>%</u>	0.031	<	0.05	ok		
v C	$\sigma_f < \varepsilon(f_0)$		3.15825	<	1.26489	no		
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.167 < 1.58							
L _w	L _w larghezza della finestra [s]							
n _w								
$n_c = L_w n_w f_0$	numero di clicli significativi [num]					38453		
f ₀	frequenza di picco H/V [Hz]					25.30		
f	frequenza							
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 3.15		
$\varepsilon(f_0)$						1.26		
A_0	valore soglia per condizioni di stabilità $\sigma_{\rm f}$ < $\epsilon(f_0)$ - vedi tabella sotto ampiezza del picco H/V alla frequenza f_0							
A _{H/√} (f)	ampiezza della curva H/V alla frequ	enza f						
f [–]	frequenza fra f _o /4 e f _o per la quale A	$A_{H/V}(f^{}) < A_0$	/2					
f ⁺	frequenza fra f₀ e 4f₀ per la quale A _{H//} (f ⁺) < A₀/2							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀							
$\sigma_{A}(f)$								
$\sigma_{\text{logH/V}}(f)$	o _{logH/√} (f) deviazione standard della curva log A _{H/√} (f)							
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
	$\theta(f_0)$ for $s_A(f_0)$ 3 2.5 2 1.78 1.50							
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2							

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

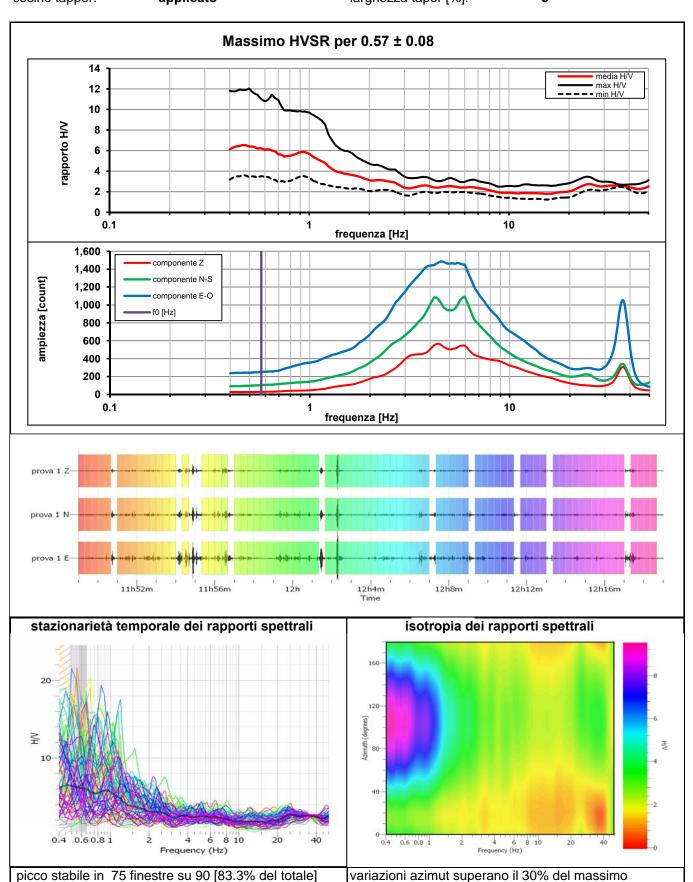
Valutazioni qualitative

profon. contrasto: < 5 m
[qualche metro]
contrasto: BASSO

copertura: lacustre? bedrock: C. Caotico?

Elaborazione spettro completo

16/08/2012 11:49:09


Inizio registrazione [data ora]:

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1500

COMEANA - prova 2

300 Frequenza campionamento [Hz] 20 Ampiezza finestra [s]:

costante di smoothing [%]: Modalita smoothing: triangolare proporzionale 10.00 applicato larghezza taper [%]: 5 cosine tapper:

CRITERI PR	OGETTO SESAME							
	Criteri per una co			[R]				
i R	[devono essere soddisfatti tutti] $\mathbf{f_0 > 10 / L_w} \qquad 0.57 \qquad > \qquad 0.50$							
	·							
ii R	$n_c(f_0) > 200$ 858 > 200							
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$	eccede	su	218	ok			
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		0	•	punti			
	Criteri per un p [almeno 5 su 6 de		-	-				
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < 0$		0.000	Hz		no		
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		2.029	Hz		ok		
iii C	A ₀ > 2		6.22	>	2	ok		
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	5%	0.175	<	0.05	no		
v C	$\sigma_f < \varepsilon(f_0)$		0.08738	<	0.08575	no		
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.818	<	2	ok		
L _w	L _w larghezza della finestra [s]							
	n _w numero di finiestre utilizzate per l'analisi [num] _{-w} n _w f ₀ numero di clicli significativi [num]							
f ₀	frequenza di picco H/V [Hz]					858 0.57		
f	frequenza							
$\sigma_{\scriptscriptstyle{\mathrm{f}}}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.08		
ε(f ₀)	valore soglia per condizioni di stabilità $\sigma_{\rm f} < \epsilon({\rm f_0})$ - vedi tabella sotto							
A_0	ampiezza del picco H/V alla frequenza f ₀							
A _{H/V} (f)	ampiezza della curva H/V alla frequenza f							
f [–]	frequenza fra $f_0/4$ e f_0 per la quale $A_{H/V}(f^-) < A_0/2$							
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀							
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)							
$\sigma_{logH/V}(f)$	deviazione standard della curva log A _{H/V} (f)							
$\theta(f_0)$	valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 2.00							
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0		
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
	$\theta(f_0) \text{ for } s_A(f_0)$ 3 2.5 2 1.78 1.58 Log $\theta(f_0) \text{ for } \sigma_{logH/V}(f_0)$ 0.48 0.4 0.3 0.25 0.2							
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.40	0.4	0.3	0.20	0.2		

ULTERIORI CRITERI Del.GRT n.261/2011

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

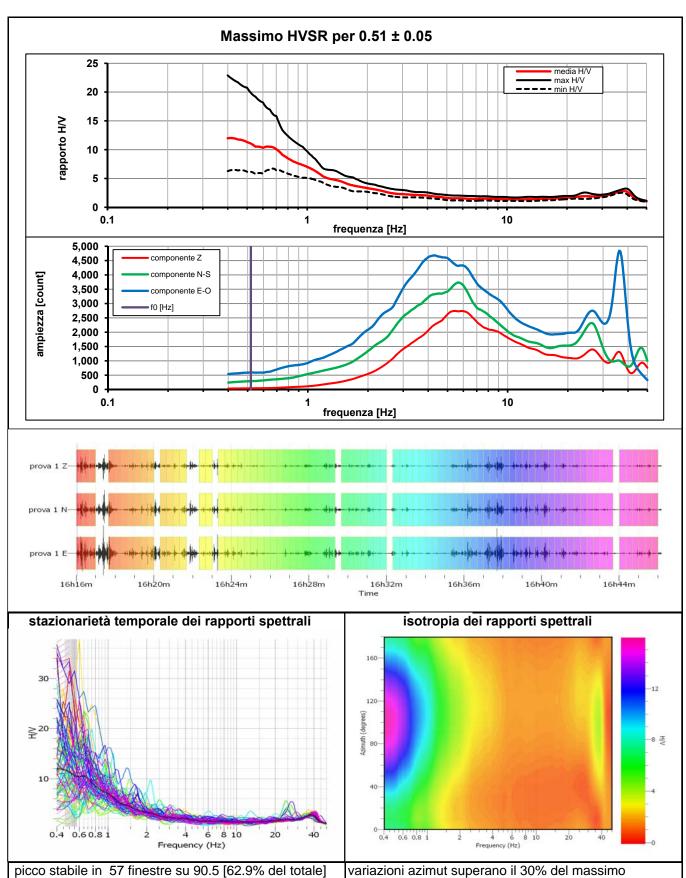
Valutazioni qualitative profon. contrasto:

[centinaia di metri]

località:	CON	IEAN	IA			data:		16/08/2012	ora:		16:16:36
operatore:	Peruzzi										
latitudine:	43,7	9626	N			longitudine:		11,04810E	quota s.l.	m.: 111	
nome stazione:	prov	a 3				orientamento strum	en	to rispetto al Nord:	2	280°	
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	٧	elocimetri 4,5 Hz			
nome file:	MT_	2012	0816	_161	636.	SAF					
gain:						freq.campion.[Hz]:		300	durata red	c. [mm:ss]:	30.17
	VEN	то		ass	ente	debole (5m/s)	m	nedio X forte	Misura	ato: rafficato	
condizioni meteo	PIOC	3GIA		ass	ente	debole medic	,	forte	Misura	ato	
	temp	eratı	ura (°	С ар	prox))		Note:			
natura terreno appoggio											
	X	suolo	asciu	tto	s	suolo umido		Note:			
accoppiamento	artific	ciale	al sı	olo:		X no	si,	tipologia			
densità edifici:		nessu	ıno [X dis	persi	addensati	al	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipol	ri, pompe, c		
automobili		X				10		strutture nelle vicir	nanze:	alberi, sondaggi, e	difici, ponti,
camion		X				10		(descrizione, altezza, dist		strutture sotterrane	ee,
pedoni								- alberi h= 3-4 m dis	t= 4-5 m		
altro											

note:

 vento piuttosto forte a raffiche (si vede molto disturbo sulla registrazione) copertura: colluvium/detrito bedrock: F. M.Morello


COMEANA - prova 3

Inizio registrazione [data ora]: 16/08/2012 16:16:36

Lunghezza della registrazione [s] 1810 Lunghezza tot. finestre analizzate [s] 1140

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	ROGETTO SESAME											
	Criteri per una cu			[R]								
	[devono essere soddisfatti tutti] $\mathbf{f_0 > 10 / L_w} \qquad 0.52 \qquad > \qquad 0.50 \qquad \mathbf{ok}$											
i R	f ₀ > 10 / L _w 0.52 > 0.50											
ii R	$n_c(f_0) > 200$		592	>	200	ok						
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5Hz$ eccede su											
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f < 2f_0 \text{ or } f_0 < f < f_0 < f_0$		0		punti	ok						
	Criteri per un p			-	-f - 11:1							
. 0	[è stato escluso il criterio vC: alr				зтатиј							
i C	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		0.000	Hz		no						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	1.181	Hz		ok						
iii C	A ₀ > 2		11.10	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.299	<	0.05	no						
v C	$\sigma_f < \varepsilon(f_0)$		0.05727	<	0.07786	ok						
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.870	<	2	ok						
L _w larghezza della finestra [s]												
n _w												
$n_c = L_w n_w f_0$	numero di clicli significativi [num]					592						
f_0	frequenza di picco H/V [Hz]					0.52						
f	frequenza			***************************************								
$\sigma_{\scriptscriptstyle f}$	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 0.05						
$\varepsilon(f_0)$	valore soglia per condizioni di stabili			ella sotto		0.08						
A_0	ampiezza del picco H/V alla frequen					11.10						
$A_{H/V}(f)$	ampiezza della curva H/V alla freque	enza f										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2									
f ⁺	frequenza fra ${\rm f_0}$ e ${\rm 4f_0}$ per la quale ${\rm A_H}$	$_{1/V}(f^+) < A_0/$	/2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
$\sigma_A(f_0)$	deviazione standard di A ₀					± 1.86						
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)											
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log A _{H/V} (f)											
$\theta(f_0)$	valore soglia per la condizione di sta	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	2.00						
	Freq.range [Hz]	Freq.range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0										
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements, processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

ULTERIORI CRITERI Del.GRT n.261/2011

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

1. Stazionarietà temporale	#RIF!
2. Isotropia	#RIF!
3. Assenza disturbi elettromagnetici	#RIF!
4. Plausibilità fisica	#RIF!
5. Robustezza statistica ^(*)	no
6. Durata	#RIF!

CLASSE	#RIF!
SOTTOCLASSE	#RIF!

Valutazioni qualitative profon. contrasto:

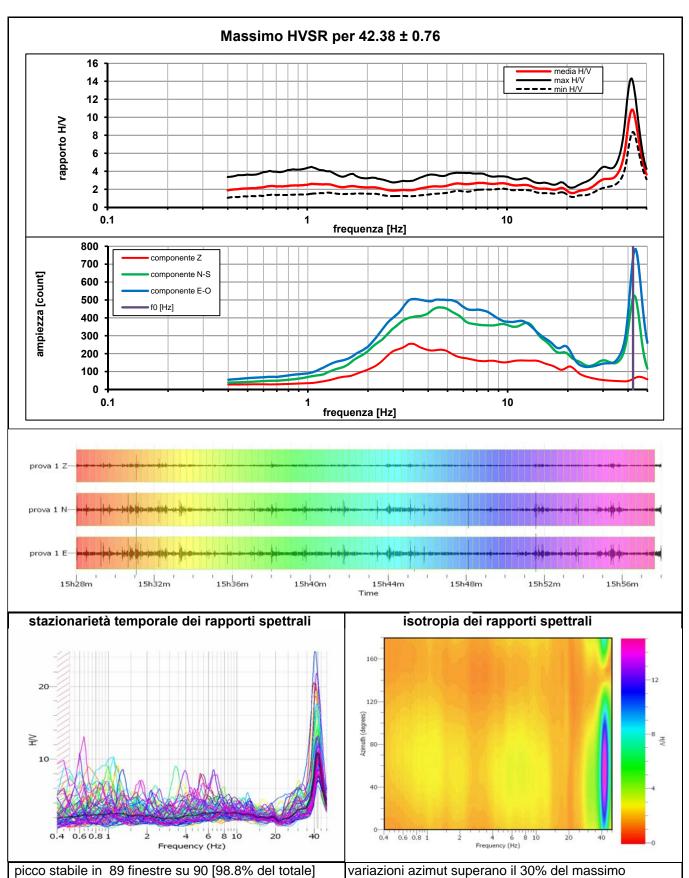
[centinaia di metri] contrasto:

località:	COMEANA data:					data:	16/08/2012	ora:	15:28:40	
operatore:	Peru	ızzi								
latitudine:	43,7	9088	N			longitudine:		11,05613E	quota s.l.m.: 86	
nome stazione:	prov	⁄a 4				orientamento strum	en	to rispetto al Nord:	110°	
tipo stazione:	SAR	A SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz		
nome file:	MT_	2012	0816	_152	2840.	SAF				
gain:						freq.campion.[Hz]:		300	durata rec. [mm:ss]	30.00
	VEN	то		ass	ente	debole (5m/s) X	m	nedio forte	Misurato:rafficato	
condizioni meteo	PIO	GGIA)	ass	ente	debole medic) [forte	Misurato	
	temp	erati	ura (°	°C ap	prox)		Note:		
natura terreno appoggio asfalto cemento calcestruzzo pavimentato altro										
	X	suolo	asciu	tto	s	suolo umido		Note:		
accoppiamento a	artifi	ciale	al sı	uolo:		X no	si,	tipologia		
densità edifici:	X	nessı	uno	dis	persi	addensati	alt	tro, tipologia		
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]			nocromatico ri, pompe, corsi d'acqui logia:	•
automobili	X							strutture nelle vicir	albeit, soridays	
camion	Χ							(descrizione, altezza, dist	, <u> </u>	anee,
pedoni	X							- olivi h= 3-4 m dist=	= 2-3 m	
altro										

note:

- vento a raffiche anche piuttosto forte

copertura: colluvium/detrito bedrock: F. M.Morello


COMEANA - prova 4

Inizio registrazione [data ora]: 16/08/2012 15:28:40

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1780

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	OGETTO SESAME										
	Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]										
i R	f ₀ > 10 / L _w 42.39 > 0.50										
ii R	****	0.511-	75452	>	200	ok					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0$		eccede	su	178	ok					
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < f_{0}$		0		punti						
	Criteri per un p [è stato escluso il criterio vC: aln		_	-	sfattil						
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		38.144	Hz	, atay	ok					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		47.641	Hz		ok					
iii C	$A_0 > 2$	0 -	10.85	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^\circ$	%	0.009	<	0.05	ok					
v C	$\sigma_f < \varepsilon(f_0)$		0.76590	<	2.11944	ok					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.306	<	1.58	ok					
	L _w larghezza della finestra [s]										
∟ _W		olici [num]				20 89					
	numero di finiestre utilizzate per l'ana	ansı [num]				75452					
f_0	numero di clicli significativi [num]					42.39					
f	frequenza di picco H/V [Hz]					72.00					
$\sigma_{ m f}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.76					
$\varepsilon(f_0)$	valore soglia per condizioni di stabili	tà $\sigma_{c} < \epsilon(f_{o})$) - vedi tahe			2.12					
A ₀	ampiezza del picco H/V alla frequen:		, vourtable			10.85					
A _{H/V} (f)	ampiezza della curva H/V alla freque										
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale A_1		/2								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _H	$_{\wedge}(f^{+}) < A_{0}$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.3					
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)										
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log	A _{H/V} (f)									
$\theta(f_0)$	valore soglia per la condizione di sta	bilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.58					
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58					
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 1

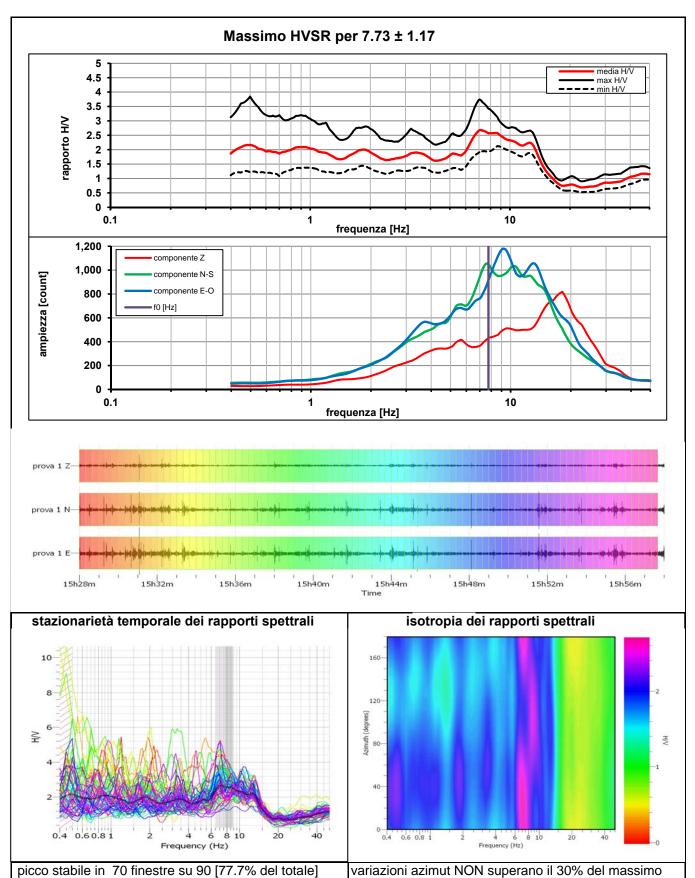
Valutazioni qualitative

profon. contrasto: < 5 m
[qualche metro]
contrasto: ALTO

località:	CON	ΛΕΑΝ	۱A			data:		16/08/2012	ora:		12:35:53
operatore:	Peru	ızzi									
latitudine:	43,7	9402	:N			longitudine:		11,05966E	quota s.l.ı	m.: 55	
nome stazione:	prov	/a 5				orientamento strume	ent	o rispetto al Nord:	1	40°	
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	VE	elocimetri 4,5 Hz			
nome file:	MT_	2012	0816	_123	553.	SAF					
gain:						freq.campion.[Hz]:		300	durata red	c. [mm:ss]:	30.00
condizioni	VEN	ITO GGIA		ass	ente ente	X debole (5m/s)	,	edio forte		ato: rafficato	
meteo	temperatura (°C approx) Note:										
natura terreno appoggio	The last alta as the first terra with the first terra with terra w										
	X	suolo	asciu	tto		suolo umido		Note:			
accoppiamento	artifi	ciale	al sı	iolo:		X no	si,	tipologia			
densità edifici:		nessı	uno	dis	persi	X addensati	alt	ro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo	ri, pompe, c		
automobili		X				2-3 m	֓֞֜֞֜֞֜֞֜֞֜֞֜֜֜֞֜֜֡֓֓֓֡֓֜֡֜֜֡֡		ſ	– alberi, sondaggi, e	difici, ponti,
camion	X							(descrizione, altezza, dist	′ L	strutture sotterrane	ее,
pedoni	X							- alberi h= 3 m dist=	1.5 m		
altro											

note:

- aiuola a bordo parcheggio e strada copertura: colluvium/detrito? bedrock: C. Caotico?


COMEANA - prova 5

Inizio registrazione [data ora]: 16/08/2012 12:35:53

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1400

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PR	ROGETTO SESAME											
Criteri per una curva HVSR affidabile [R]												
	[devono essere soddisfatti tutti] $\mathbf{f_0} > 10 / \mathbf{L_w} \qquad \qquad 7.74 \qquad > \qquad 0.50 \qquad \mathbf{ok}$											
i R	$f_0 > 10 / L_w$ 7.74 > 0.50											
ii R	$n_c(f_0) > 200$		10832	>	200	ok						
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0$		eccede	su	287	ok						
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f < 2f_0 \text{ or } f < f_0 < f < f_0 < f_0$		0		punti							
	Criteri per un p [è stato escluso il criterio vC: alr		_	-	ofo44:1							
: 0					siaiiij							
i C	esiste f in $[f_0/4, f_0] A_{H/V}(f) <$		0.000	Hz		no						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	15.081	Hz		ok						
iii C	A ₀ > 2		2.58	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.087	<	0.05	no						
v C	$\sigma_f < \varepsilon(f_0)$		1.17158	<	0.38687	no						
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.392	<	1.58	ok						
L _w larghezza della finestra [s]												
n _w												
	numero di clicli significativi [num]					70 10832						
f ₀	frequenza di picco H/V [Hz]					7.74						
f	frequenza											
σ_{f}	deviazione standard della frequenza	a di picco d	i H/V [Hz]			± 1.17						
ε(f ₀)	valore soglia per condizioni di stabili					0.39						
A_0	ampiezza del picco H/V alla frequen		iii			2.58						
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2									
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _t	$_{H/V}(f^+) < A_{0}$	/2									
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.39						
$\sigma_{A}(f)$	deviazione standard di A _{H/v} (f)											
$\sigma_{logH/V}(f)$	deviazione standard della curva log	A _{H/V} (f)										
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58						
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \											
	$\frac{\theta(f_0) \text{ for } s_A(f_0)}{\text{Log } \theta(f_0) \text{ for } \sigma_{\log H/V}(f_0)}$	3	2.5	2	1.78	1.58						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

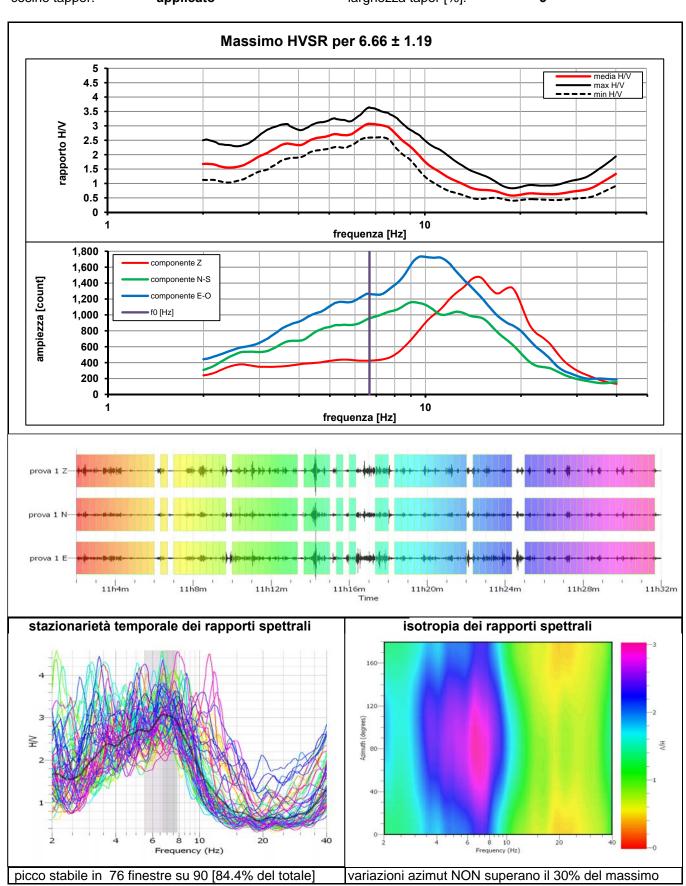
profon. contrasto: 10-20 m
[decine di metri]
contrasto: BASSO

località:	CON	/IEAN	NΑ			data:		16/08/2012	ora:		11:02:49
operatore:	Peruzzi										
latitudine:	43,79720N					longitudine:		11,06618E	quota s.l	.m.: 30.3	
nome stazione:	prova 6					orientamento strume	en	to rispetto al Nord:	;	310°	
tipo stazione:	SARA SR04HS					tipo sensori:	V	elocimetri 4,5 Hz			
nome file: MT_20120816_110249				SAF							
gain:						freq.campion.[Hz]:		300	durata re	ec. [mm:ss]:	30.00
condizioni	VEN	VENTO assente debole (5m/s) X medio forte						Misu	rato		
meteo	PIO	GGIA)	ass	ente	debole medio		forte	Misu	rato	
temperatura (°C approx) Note:											
natura terreno appoggio	X terra X dura ghiaia sabbia roccia X erba X erba X alta asfalto cemento calcestruzzo pavimentato altro										
	X suolo asciutto suolo umido Note:										
accoppiamento artificiale al suolo: X no si, tipologia											
densità edifici: nessuno X dispersi addensati altro, tipologia											
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo no X si, tipol irrigato	ri, pompe,		,
automobili				X		30		strutture nelle vicir	nanze:	alberi, sondaggi, e	difici, ponti,
camion		X				30		(descrizione, altezza, dist	anza)	strutture sotterrane	ee,
pedoni	X										
altro											

note:

- irrigatori in funzio sul campo da calcio
- il vento tende ad aumentare dopo circa 10 minuti

copertura: alluvioni recenti bedrock: Macigno Londa?


COMEANA - prova 6

Inizio registrazione [data ora]: 16/08/2012 11:02:49

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1520

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PROGETTO SESAME									
Criteri per una curva HVSR affidabile [R]									
	[devono essere soddisfatti tutti]								
i R	$f_0 > 10 / L_w$ 6.66 > 0.50 ok $n_c(f_0) > 200$ 10130 > 200 ok								
ii R	$n_c(f_0) > 200$ 10130 > 200								
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5Hz$ eccede su								
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < 0.5Hz = 0$ punti									
Criteri per un picco HVSR chiaro [C]									
[è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]									
iC	esiste f in $[f_0/4, f_0] A_{H/V}(f) < f$		0.000	Hz		no ok			
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) < A_0 / 2$ 10.659 Hz								
iii C	A₀ > 2 3.07 > 2								
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.090 < 0.05								
v C	$\sigma_f < \varepsilon(f_0) \qquad \qquad 1.19949 \qquad < \qquad 0.33324$								
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.186 < 1.58								
L _w larghezza della finestra [s]									
	n _w numero di finiestre utilizzate per l'analisi [num]								
	n_w numero di finiestre utilizzate per l'analisi [num] 76 $L_w n_w f_0 \text{ numero di clicli significativi [num]} 10130$								
f ₀									
f	f frequenza di picco H/V [Hz] 6.66								
$\sigma_{\rm f}$	deviazione standard della frequenza di picco di H/V [Hz] ± 1.19								
$\varepsilon(f_0)$	valore soglia per condizioni di stabilità $\sigma_f < \epsilon(f_0)$ - vedi tabella sotto 0.33								
A_0	ampiezza del picco H/V alla frequenza f ₀ 3.07								
A _{H/√} (f)	ampiezza della curva H/V alla frequenza f								
f ⁻	frequenza fra $f_0/4$ e f_0 per la quale $A_{H/V}(f^-) < A_0/2$								
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀ ± 1.18								
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)								
$\sigma_{\text{logH/V}}(f)$	deviazione standard della curva log								
$\theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)	$< \theta(f_0)$ - vec	di tabella so	tto	1.58			
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58			
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2			

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

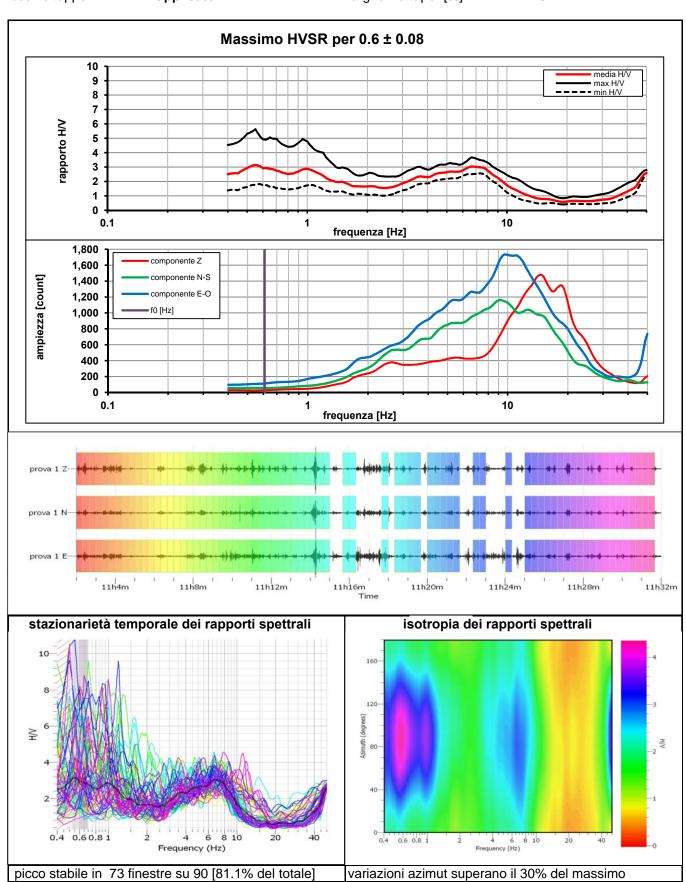
Valutazioni qualitative
profon. contrasto: 10-20 m

[decine di metri]

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

copertura: alluvioni recenti bedrock: Macigno Londa?

Elaborazione spettro completo


COMEANA - prova 6

Inizio registrazione [data ora]: 16/08/2012 11:02:49

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1460

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii R iii R								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii R iii R								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii R iii R								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iii R								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i C								
$ \sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5\text{Hz} \qquad 0 \qquad \text{punti} $ $ \hline $	i C								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ii C								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iii C								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	iv C								
	v C								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vi C								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L., larghezza della finestra [s]								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
f frequenza di picco H/V [Hz] 0.61									
f frequenza									
$\epsilon(f_0)$ valore soglia per condizioni di stabilità $\sigma_{\rm f} < \epsilon(f_0)$ - vedi tabella sotto 0.09	 ε(f₀)								
A ₀ ampiezza del picco H/V alla frequenza f ₀ 2.93									
A _{H/V} (f) ampiezza della curva H/V alla frequenza f	A _{H/V} (f)								
f - frequenza fra $f_0/4$ e f_0 per la quale $A_{H/V}(f) < A_0/2$									
f + frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$	f ⁺								
$\sigma_{A}(f_0)$ deviazione standard di A_0 \pm 1.7									
$\theta(f_0)$ valore soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$ - vedi tabella sotto 2.00	$\sigma_{A}(f)$								
Freq.range [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0	σ _A (f) σ _{logH/V} (f)								
$\epsilon(f_0) [Hz]$ 0.25 f_0 0.2 f_0 0.15 f_0 0.10 f_0 0.05	$\sigma_{A}(f)$ $\sigma_{logH/V}(f)$ $\theta(f_{0})$								
$\theta(f_0) \text{ for } s_A(f_0)$ 3 2.5 2 1.78 1.58	$\sigma_{A}(f)$ $\sigma_{logH/V}(f)$ $\theta(f_{0})$								
Log θ(f ₀) for $\sigma_{logH/V}$ (f ₀) 0.48 0.4 0.3 0.25 0.2	$\sigma_{A}(f)$ $\sigma_{logH/V}(f)$ $\theta(f_{0})$								

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	no
6. Durata	ok

CLASSE	С	
SOTTOCLASSE		

Valutazioni qualitative profon. contrasto:

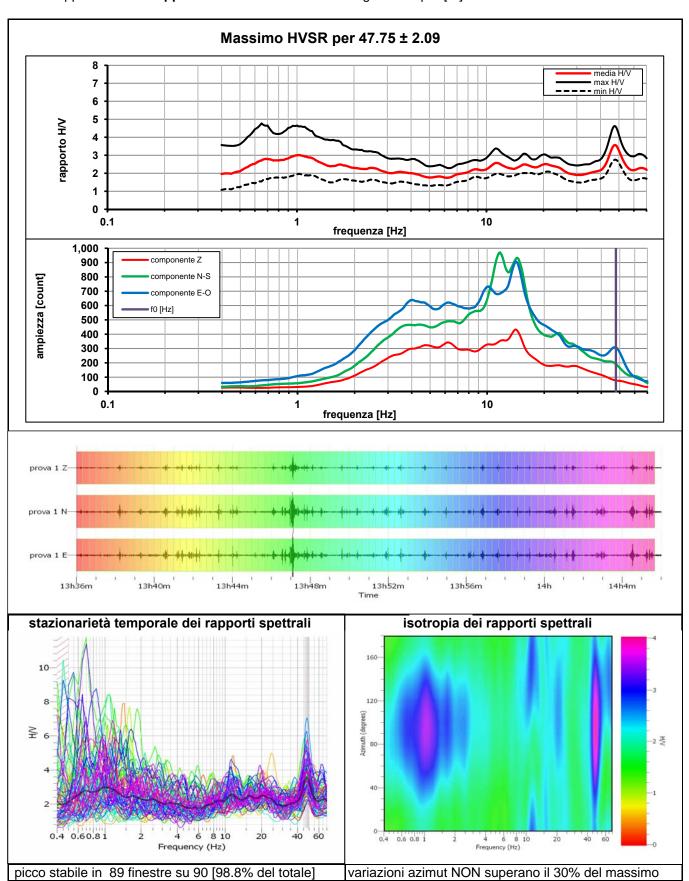
[centinaia di metri]

località:	CON	/IEAN	NΑ			data:		16/08/2012	ora:		13:36:23
operatore:	Peruzzi										
latitudine:	43,79182N					longitudine:		11,06947E	quota s.l	.m.: 46.5	
nome stazione:	prova 7					orientamento strum	en	to rispetto al Nord:		15°	
tipo stazione:	SARA SR04HS					tipo sensori:	V	elocimetri 4,5 Hz			
nome file: MT_20120816_133623				3 623 .	SAF						
gain:					freq.campion.[Hz]:		300	durata re	c. [mm:ss]:	30.00	
	VENTO assente				ente	X debole (5m/s)	m	nedio forte	Misu	rato: rafficato	
condizioni meteo	PIOGGIA X assente				ente	debole medic)	forte	Misur	ato	
	temperatura (°C approx) Note:										
natura terreno appoggio	soffice						roccia	X	erba alt	ssa a	
	X suolo asciutto suole					suolo umido	uolo umido Note:				
accoppiamento artificiale al suolo: X no si, tipologia_											
densità edifici:		nessı	uno	X dis	persi	addensati	al	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]	$ar{ }$	fonti di rumore mo (fabbriche,cantieri lavo no X si, tipo	ori, pompe,		
automobili		X				10	1	strutture nelle vici		alberi, sondaggi, e	edifici, ponti,
camion								(descrizione, altezza, dis	tanza)	strutture sotterran	ee,
pedoni											
altro											

note:

- campo coltivato di fieno: orizzonte areato dovuto ad aratura e secco

MISURA RIPETUTA VEDI PROVA n.11 copertura: alluvioni recenti bedrock: C. Caotico ?


COMEANA - prova 7

Inizio registrazione [data ora]: 16/08/2012 13:36:23

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1780

Frequenza campionamento [Hz] 300 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

CRITERI PROGETTO SESAME									
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]									
i R	f ₀ > 10 / L _w	ere soudis	47.76	>	0.50	ok			
ii R	$n_c(f_0) > 200$ 85012 > 200 ok								
n ix	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > 0.5f_{0} < f_{0} <$	0 EU7	eccede		200	UK			
iii R	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} < 0.5Hz$ 0 punti								
	Criteri per un picco HVSR chiaro [C]								
[è stato escluso il criterio vC: almeno 4 su 5 devono essere soddisfatti]									
i C									
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <		0.000	Hz		no			
iii C	$A_0 > 2$ 3.56 > 2								
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$ 0.005 < 0.05								
v C	$\sigma_f < \varepsilon(f_0) \qquad \qquad 2.09165 \qquad < \qquad 2.38797$								
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.297 < 1.58								
L _w larghezza della finestra [s] 20									
∟ _W									
**									
f_0									
f frequenza									
$\sigma_{\scriptscriptstyle f}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 2.09			
ε(f ₀)						2.39			
A_0	valore soglia per condizioni di stabilità $\sigma_f < \epsilon(f_0)$ - vedi tabella sotto 2.39 ampiezza del picco H/V alla frequenza f_0 3.56								
A _{H/V} (f)	ampiezza della curva H/V alla freque	enza f							
f [–]	frequenza fra f ₀ /4 e f ₀ per la quale A _l	$_{H/V}(f^{-}) < A_0$	/2						
f ⁺	frequenza fra f_0 e $4f_0$ per la quale $A_{H/V}(f^+) < A_0/2$								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀					± 1.29			
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)								
$\sigma_{logH/V}(f)$									
$\theta(f_0)$	valore soglia per la condizione di sta	abilitá $\sigma_{A}(t)$	< θ(t ₀) - vec	di tabella so	tto	1.58			
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0			
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀			
	$\theta(f_0)$ for $s_A(f_0)$	3 0.48	2.5 0.4	0.3	1.78 0.25	1.58 0.2			
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.40	0.4	0.5	0.25	0.2			

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	no
6. Durata	ok

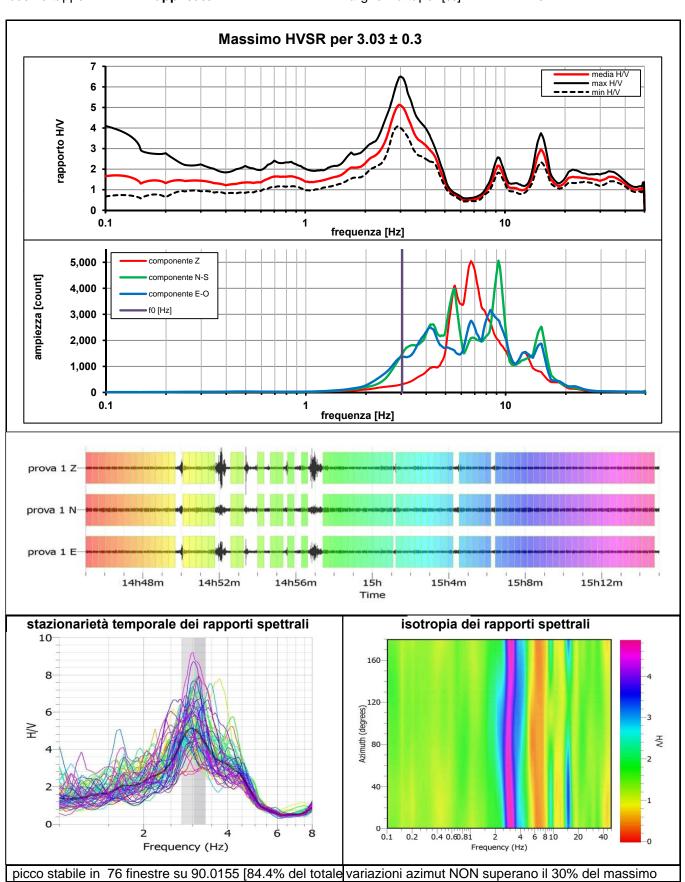
CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

contrasto:	ALTO
[au	alche metro]
profon. contrasto:	< 5 m

località:	CON	ΛΕΑΝ	ΙA			data:		19/10/2012	ora:	14:45	:52	
operatore:	Peru	ızzi										
latitudine:	43,8	0622	N			longitudine:		11,06170E	quota s.l.m.:	35,6		
nome stazione:	prov	/a 9				orientamento str	umen	to rispetto al Nord:	235°			
tipo stazione:	SAR	RA SF	R04H	S		tipo sensori:	v	elocimetri 4,5 Hz				
nome file:	ome file: MT_20121019_144552.SAF											
gain:						freq.campion.[Hz	<u>z]:</u>	100	durata rec. [mi	m:ss]: 30. 0	01	
	VEN	ITO)	(ass	ente	debole (5m/s)	n	nedio forte	Misurato			
condizioni meteo	PIO	GGIA)	ass	ente	debole m	edio	forte	Misurato			
	temp	perati	ura (°	°C ap	prox) _20°_		Note:			_	
natura terreno appoggio	X terra dura X soffice ghiaia sabbia roccia X erba X erba Alta alta asfalto cemento calcestruzzo pavimentato altro											
		suolo	asciu	tto	X	suolo umido		Note:				
accoppiamento	artifi	ciale	al sı	uolo:		X no	si	, tipologia				
densità edifici:		nessı	uno	X dis	persi	addensati	al	tro, tipologia				
transienti:	nessuno	pochi	noderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lav no X si, tip				
automobili		X					20	strutture nelle vic	aibeii,	sondaggi, edifici, ponti,	$\overline{\Box}$	
camion	X							(descrizione, altezza, di	stanza) struttu	re sotterranee,		
pedoni	X							tralicci En.El. H =	20 m dist = 30	m		
altro	X											
	7 000	TOTAL STATE OF THE		. 197300	MILL DOUT & TO	1194 (1982 and 1984) 11 (1984) 12 (1984) 12 (1984) 13 (1984) 13 (1984) 13 (1984) 13 (1984) 13 (1984) 13 (1984)	ENGLISH MED					

note: RIPETIZIONE DELLA PROVA copertura: alluvioni recenti bedrock: Macigno Londa?


COMEANA - prova 9

Inizio registrazione [data ora]: 19/10/2012 14:45:52

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1520

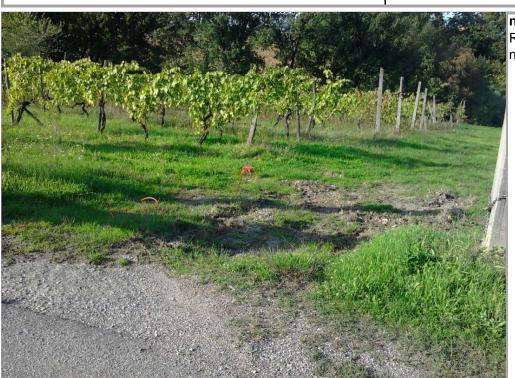
Frequenza campionamento [Hz] 100 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato larghezza taper [%]: 5

	ROGETTO SESAME Criteri per una c	urva HVSF	affidabile	[R]								
[devono essere soddisfatti tutti]												
i R	f ₀ > 10 / L _w		3.03	>	0.50	ok						
ii R	$n_c(f_0) > 200$		4611	>	200	ok						
D	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	> 0.5Hz	eccede		222	ماد						
iii R	$\sigma_{A}(f) < 3 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0}$		0	su	punti	ok						
	Criteri per un picco HVSR chiaro [C]											
	[almeno 5 su 6 o		İ									
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f)$		2.121	Hz		ok						
ii C	esiste f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺)	< A ₀ / 2	4.530	Hz		ok						
iii C	A ₀ > 2		5.07	>	2	ok						
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm f_0$	5%	0.040	<	0.05	ok						
v C	$\sigma_f < \varepsilon(f_0)$		0.30250	<	0.15167	no						
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.260	<	1.58	ok						
L _w larghezza della finestra [s]												
n _w	numero di finiestre utilizzate per l'a	nalisi [num]				20 76						
	numero di clicli significativi [num]					4611						
f ₀	frequenza di picco H/V [Hz]					3.03						
f	frequenza											
σ_{f}	deviazione standard della frequenz	₂a di picco d	li H/V [Hz]			± 0.3						
ε(f ₀)	valore soglia per condizioni di stabi					0.15						
A_0	ampiezza del picco H/V alla freque	enza f _o				5.07						
A _{H/V} (f)	ampiezza della curva H/V alla frequ	uenza f										
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A		·····									
f +	frequenza fra f ₀ e 4f ₀ per la quale A	$\iota_{H/V}(f^+) < A_0$	/2			y						
$\sigma_A(f_0)$	deviazione standard di A ₀					± 1.26						
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)											
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log					·						
$\theta(f_0)$	valore soglia per la condizione di si	tabilità σ _A (f)	$< \theta(f_0)$ - vec	li tabella so	tto	1.58						
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0						
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀						
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58						
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2						

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]


1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

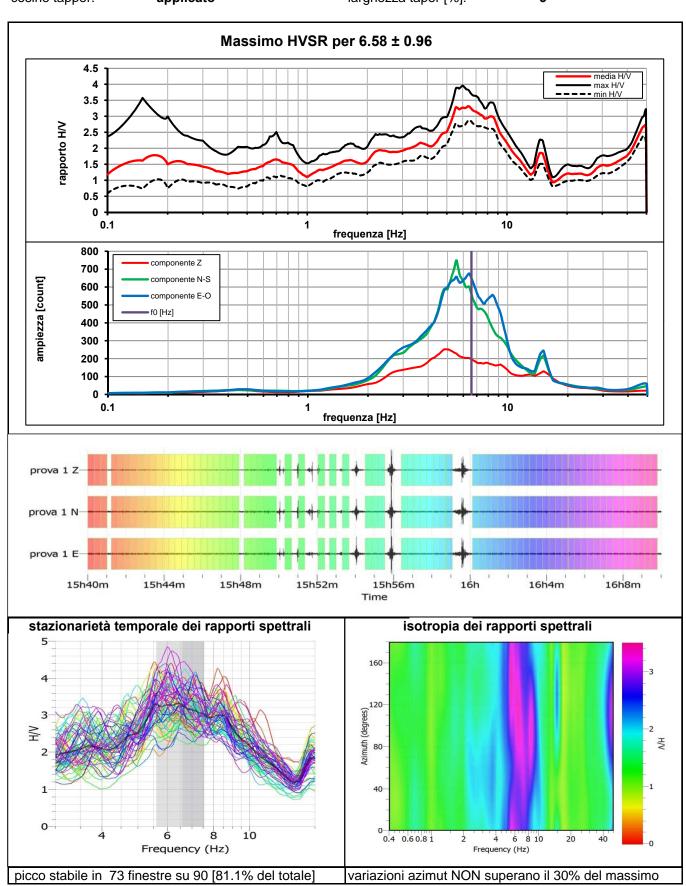
CLASSE	Α
SOTTOCLASSE	Tipo 1

Valutazioni qualitative

contrasto:	ALTO
[d	lecine di metri]
profon. contrasto	20-30 m

località:	СОМ	EAN	IA			data:		19/10/2012	ora:		15:40:52
operatore:	Peruzzi										
latitudine:	43,80	011	N			longitudine:		11,05538E	quota s.l.m.:	67,5	
nome stazione:	prova	a 10				orientamento strum	en	to rispetto al Nord:	235°		
tipo stazione:	SARA	4 SF	R04H	S		tipo sensori:	٧	elocimetri 4,5 Hz			
nome file:	MT_2	2012	1019	_154	052.	SAF					
gain:						freq.campion.[Hz]:		100	durata rec. [r	mm:ss]:	30.00
condizioni	VENT			ass		debole (5m/s)	_	nedio forte			
meteo	tempe							Note:	imodrato _		
natura terreno appoggio	X t	terra asfalt		dura soffice	ento	ghiaia sabb	7	roccia	X erb	pa X bas	
		suolo	asciu	tto	X	suolo umido		Note:			
accoppiamento	artific	iale	al sı	iolo:		X no	si	, tipologia			
densità edifici:	X	nessu	ino	dis	persi	addensati	al	tro, tipologia			
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo		i d'acqua,	
automobili		X	_		_	-	3	strutture nelle vicir	albe	eri, sondaggi, e	difici, ponti,
camion	Х							(descrizione, altezza, dist	anza) L	itture sotterrane	ee,
pedoni	Х							filari viti			
altro	х										

note: RIPETIZIONE DELLA PROVA copertura: lacustre? bedrock: C. Caotico?


COMEANA - prova 10

Inizio registrazione [data ora]: 19/10/2012 15:40:52

Lunghezza della registrazione [s] 1800 Lunghezza tot. finestre analizzate [s] 1460

Frequenza campionamento [Hz] 100 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PROGETTO SESAME											
Criteri per una curva HVSR affidabile [R] [devono essere soddisfatti tutti]											
	•	ere soaais.	-		0.50	ok					
i R	$f_0 > 10 / L_w$ 6.59 > 0.50										
ii R	$n_c(f_0) > 200$		9614	>	200	ok					
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_{0} < f < 2f_{0} \text{ if } f_{0} > f$	eccede	su	223	ok						
	$\sigma_{A}(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f$		0		punti						
	Criteri per un p [è stato escluso il criterio vC: aln		_	-	ofottil						
: 0	1				Siaiuj	o le					
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		2.018	Hz		ok					
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) <$	A ₀ / 2	27.188	Hz		ok					
iii C	A ₀ > 2		3.26	>	2	ok					
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5^{\circ}$	%	0.090	<	0.05	no					
v C	$\sigma_f < \varepsilon(f_0)$		0.96955	<	0.32926	no					
vi C	$\sigma_{A}(f_0) < \theta(f_0)$ 1.153 < 1.58										
L _w	L _w larghezza della finestra [s]										
n _w	numero di finiestre utilizzate per l'an	alisi [num]				20 73					
	numero di clicli significativi [num]					9614					
f ₀	frequenza di picco H/V [Hz]					6.59					
f	frequenza										
$\sigma_{\rm f}$	deviazione standard della frequenza	di picco d	i H/V [Hz]			± 0.96					
$\varepsilon(f_0)$	valore soglia per condizioni di stabili			ella sotto		0.33					
A_0	ampiezza del picco H/V alla frequen					3.26					
A _{H/√} (f)	ampiezza della curva H/V alla freque	enza f									
f ⁻	frequenza fra f ₀ /4 e f ₀ per la quale A	$_{H/V}(f^{-}) < A_0$	/2								
f ⁺	frequenza fra f ₀ e 4f ₀ per la quale A _H	$_{I/V}(f^+) < A_{0}$	/2								
$\sigma_{A}(f_{0})$	deviazione standard di A ₀ ± 1.1										
$\sigma_{A}(f)$	deviazione standard di A _{H/V} (f)										
$\sigma_{\text{logH/V}}(\text{f})$	deviazione standard della curva log										
$\theta(f_0)$	valore soglia per la condizione di sta	bilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	di tabella so	tto	1.58					
	Freq.range [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0					
	ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀					
	$\theta(f_0)$ for $s_A(f_0)$	3	2.5	2	1.78	1.58					
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2					

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

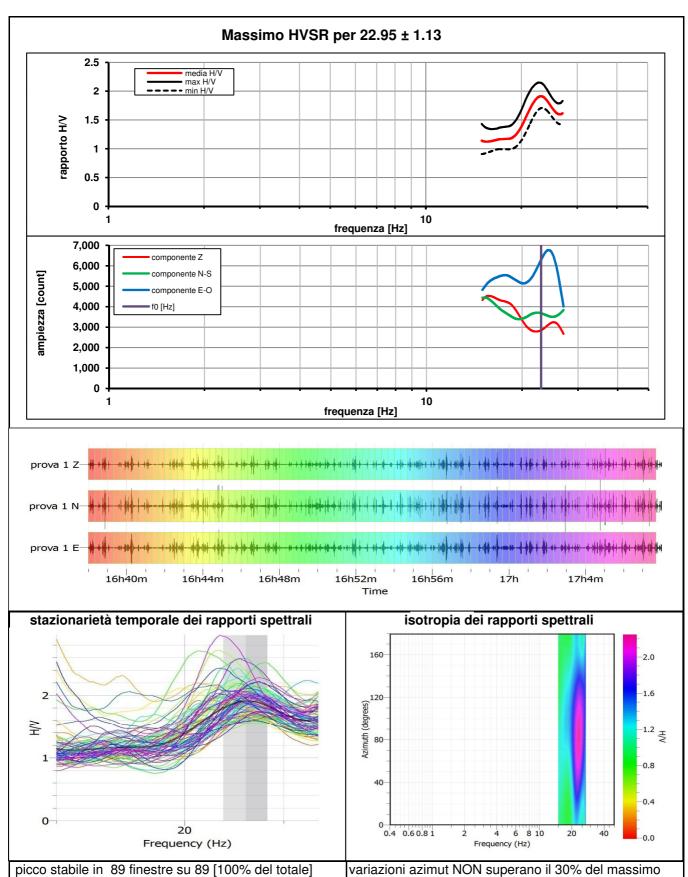
1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica ^(*)	ok
6. Durata	ok

CLASSE	Α
SOTTOCLASSE	Tipo 1

Valutazioni qualitative

contrasto:		ALTO
	[decine	di metri]
profon. contras	to:	10-20 m

località:	CON	ЛΕΑΝ	NΑ			data:		19/10/2012	ora:		16:38:37	
operatore:	Peru	Peruzzi										
latitudine:	43,7	9197	'N			longitudine:		11,06768E	quota s.l.m.:	53		
nome stazione:	prov	/a 11				orientamento strume	ent	to rispetto al Nord:	115°			
tipo stazione:	SAF	RA SF	R04H	S		tipo sensori:	V	elocimetri 4,5 Hz				
nome file:	MT_	MT_20121019_163837.SAF										
gain:						freq.campion.[Hz]:		100	durata rec. [n	nm:ss]:	29.99	
	VEN	ITO	>	ass	ente	debole (5m/s)	m	edio forte	Misurato _			
condizioni meteo	PIO	GGIA	\	ass	ente	debole medio		forte	Misurato _			
	tem	oerati	ura (ʻ	℃ ар	prox) _20°_		Note:				
natura terreno appoggio												
		suolo	asciu	tto	X	suolo umido		Note:				
accoppiamento	artifi	ciale	al sı	uolo:		no	si,	tipologia				
densità edifici:		nessı	uno	X dis	persi	addensati	alt	tro, tipologia				
transienti:	nessuno	pochi	moderati	molti	molto densi	distanza [m]		fonti di rumore mo (fabbriche,cantieri lavo X no si, tipol	ri, pompe, corsi		ecc.):	
automobili camion	X				X	7-10		strutture nelle vicir (descrizione, altezza, dist	aibe	ri, sondaggi, e ture sotterrane	difici, ponti, e,	
pedoni	X							edificio H = 5 m dis	st = 8-10 m			
altro	X							albero H= 5 m dist	= 7-8 m			



Inizio registrazione [data ora]: 19/10/2012 16:38:37

Lunghezza della registrazione [s] 1799 Lunghezza tot. finestre analizzate [s] 1780

Frequenza campionamento [Hz] 100 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PR	CRITERI PROGETTO SESAME					
	Criteri per una cu [devono ess			[R]		
i R	$f_0 > 10 / L_w$	ere soudisi	22.96		0.50	ok
	$n_c(f_0) > 200$			>		
ii R	****	2 -: 1	40867	>	200	ok
iii R	$\sigma_{A}(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < f_0 > 0.5f_0 < $		eccede	su	999	ok
	$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0$		0	-	punti	
	Criteri per un p [è stato escluso il criterio vC: ali			-	efattil	
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) <$		0.000	Hz	natuj	no
ii C	esiste f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) <$		0.000	Hz		no
iii C	$A_0 > 2$. A ₀ / Z	1.91		2	
	· ·	-01		>		no
iv C	$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5$	%	0.011	<	0.05	ok
v C	$\sigma_f < \mathcal{E}(f_0)$		1.13715	<	1.14796	ok -
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.120	<	1.58	ok
L _w larghezza della finestra [s]						20
n _w numero di finiestre utilizzate per l'analisi [num]						89
$n_c = L_w n_w f_0$ numero di clicli significativi [num]						40867
f ₀ frequenza di picco H/V [Hz]					22.96	
f frequenza						
σ _f deviazione standard della frequenza di picco di H/V [Hz]					± 1.13	
$\varepsilon(f_0)$						1.15
A_0						1.91
$A_{H/V}(f)$						
f ⁻						
f ⁺						
$\sigma_{A}(f_{0})$					± 1.12	
$\sigma_{A}(f)$						
$\sigma_{logH/V}(f)$	deviazione standard della curva log					
$\theta(f_0)$	valore soglia per la condizione di sta	abilità $\sigma_A(f)$	$< \theta(f_0)$ - ved	li tabella sot	:to	1.58
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $s_A(f_0)$ 3 2.5 2 1.78						1.58
	Log $\theta(f_0)$ for $\sigma_{logH/V}(f_0)$	0.48	0.4	0.3	0.25	0.2

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements, processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

ULTERIORI CRITERI Del.GRT n.261/2011

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

1. Stazionarietà temporale	ok
2. Isotropia	ok
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	В
SOTTOCLASSE	Tipo 2

Valutazioni qualitative

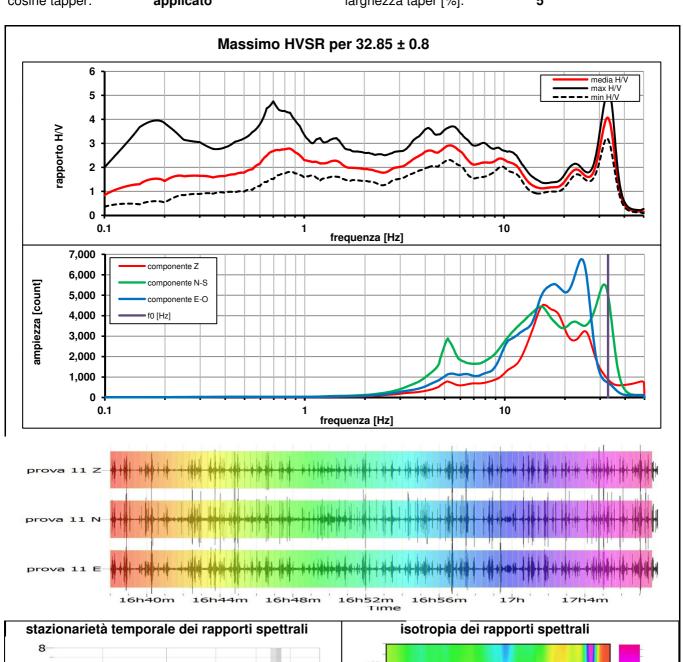
profon. contrasto: < 5 m

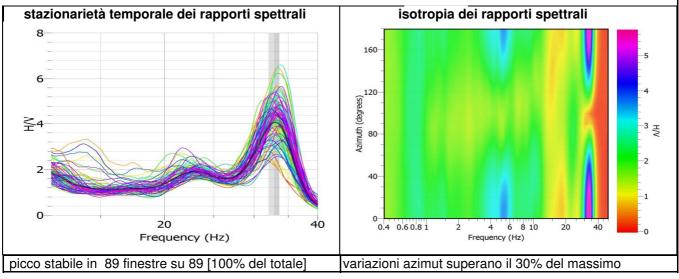
[qualche metro]

contrasto:

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

Elaborazione spettro completo


COMEANA - prova 11


Inizio registrazione [data ora]: 19/10/2012 16:38:37

Lunghezza della registrazione [s] 1799 Lunghezza tot. finestre analizzate [s] 1780

Frequenza campionamento [Hz] 100 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale cosine tapper: cosin

CRITERI PROGETTO SESAME						
	Criteri per una c			[R]		
	[devono ess	sere soddisi	-			
i R	f ₀ > 10 / L _w		32.86	>	0.50	ok
ii R	$n_c(f_0) > 200$		58490	>	200	ok
iii R	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$	> 0.5Hz	eccede	su	179	ok
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0$		0		punti	OK
	Criteri per un p			_		
	[è stato escluso il criterio vC: al				stattij	
iC	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < 0$		28.564	Hz		ok
ii C	esiste f ⁺ in $[f_0, 4f_0] \mid A_{H/V}(f^+) <$	< A ₀ / 2	36.407	Hz		ok
iii C	A ₀ > 2		4.06	>	2	ok
iv C	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5$	5%	0.009	<	0.05	ok
v C	$\sigma_f < \mathcal{E}(f_0)$		0.80185	<	1.64298	ok
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.274	<	1.58	ok
L _w larghezza della finestra [s]						20
n _w numero di finiestre utilizzate per l'analisi [num]						89
$n_c = L_w n_w f_0$ numero di clicli significativi [num]						58490
f ₀ frequenza di picco H/V [Hz]					32.86	
f frequenza						
σ _f deviazione standard della frequenza di picco di H/V [Hz]					± 0.8	
$\varepsilon(f_0)$	$\epsilon(f_0)$ valore soglia per condizioni di stabilità $\sigma_f < \epsilon(f_0)$ - vedi tabella sotto					1.64
A_0	A ₀ ampiezza del picco H/V alla frequenza f ₀ 4.06					4.06
$A_{H/V}(f)$	A _{H/V} (f) ampiezza della curva H/V alla frequenza f					
f ⁻	f^- frequenza fra $f_0/4$ e f_0 per la quale $A_{H/V}(f^-) < A_0/2$					
f ⁺	·					
$\sigma_{A}(f_{0})$	deviazione standard di A ₀ ± 1.27				± 1.27	
$\sigma_{A}(f)$						
- 104H/ V (· /	deviazione standard della curva log					
$\Theta(f_0)$	valore soglia per la condizione di st	abilità $\sigma_A(f)$	$< \theta(f_0)$ - vec	li tabella so	tto	1.58
	Freq.range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
		0.05.4	201	0.45.6	0 10 1	0.0=.
	$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
	$\epsilon(f_0)$ [Hz] $\theta(f_0)$ for $s_A(f_0)$	0.25 t ₀	0.2 t ₀ 2.5	0.15 f ₀	1.78	0.05 t ₀ 1.58

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements, processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

ULTERIORI CRITERI Del.GRT n.261/2011

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	no
5. Robustezza statistica ^(*)	ok
6. Durata	ok

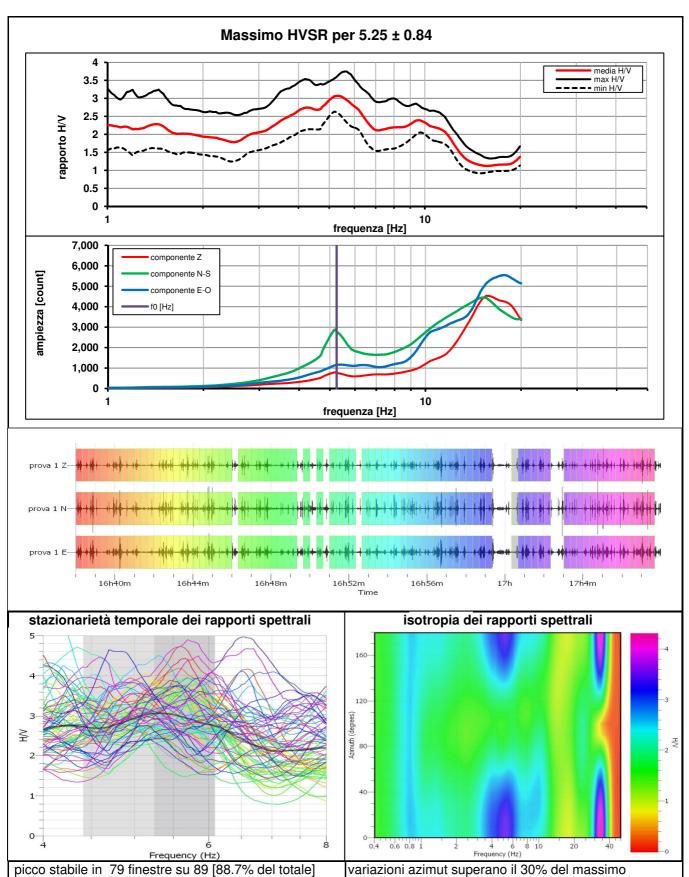
CLASSE	С
SOTTOCLASSE	

Valutazioni qualitative

valutazioni quantative				
profon. contrasto: < 5 m				
[qual	che metro]			
contrasto:	ALTO			

^(*) su roccia o alluvioni con basamento sismico molto profondo, non avendo picco tale condizione non è soddisfatta, ma si può considerare la misura attendibile se confermata da ripetizione misura

Elaborazione picco 1-20 Hz


COMEANA - prova 11

Inizio registrazione [data ora]: 19/10/2012 16:38:37

Lunghezza della registrazione [s] 1799 Lunghezza tot. finestre analizzate [s] 1580

Frequenza campionamento [Hz] 100 Ampiezza finestra [s]: 20

Modalita smoothing: triangolare proporzionale costante di smoothing [%]: 10.00 cosine tapper: applicato costante di smoothing [%]: 5

CRITERI PR	CRITERI PROGETTO SESAME						
	Criteri per una cu			[R]			
	[devono esse	ere soddisi	- I				
i R	f ₀ > 10 / L _w		5.25	>	0.50	ok	
ii R	$n_{c}(f_{0}) > 200$		8298	>	200	ok	
iii R	$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 > 0.5f_0 < f < 2f_0 \text{ or } f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f < 0.5f_0 < f <$	> 0.5Hz	eccede	su	463	ok	
	$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0 \text{ if } f_0 < f$		0		punti	UK	
	Criteri per un p			-	C = 44/7		
	[è stato escluso il criterio vC: aln		ı		stattij		
i C	esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < f$		0.000	Hz		no	
ii C	esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+)$ <	A ₀ / 2	12.832	Hz		ok	
iii C	A ₀ > 2		3.06	>	2	ok	
iv C	$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5^{\circ}$	%	0.068	<	0.05	no	
v C	$\sigma_f < \mathcal{E}(f_0)$		0.84066	<	0.26258	no	
vi C	$\sigma_{A}(f_0) < \theta(f_0)$		1.181	<	1.58	ok	
L _w	L _w larghezza della finestra [s]						
n _w numero di finiestre utilizzate per l'analisi [num]						79	
$n_c = L_w n_w f_0$ numero di clicli significativi [num]						8298	
f ₀ frequenza di picco H/V [Hz]					5.25		
f frequenza							
$\sigma_{\scriptscriptstyle{f}}$	σ _f deviazione standard della frequenza di picco di H/V [Hz]					± 0.84	
$\varepsilon(f_0)$	valore soglia per condizioni di stabilità $\sigma_f < \epsilon(f_0)$ - vedi tabella sotto					0.26	
A_0						3.06	
A _{H/V} (f)							
f ⁻	f^- frequenza fra $f_0/4$ e f_0 per la quale $A_{H/V}(f^-) < A_0/2$						
f ⁺							
$\sigma_{A}(f_{0})$	deviazione standard di A ₀ ±				± 1.18		
$\sigma_{A}(f)$							
$\sigma_{logH/V}(f)$	deviazione standard della curva log	$A_{H/V}(f)$	•••••	***************************************			
$\Theta(f_0)$	valore soglia per la condizione di sta	abilità σ _A (f)				1.58	
		-02	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0	
	Freq.range [Hz]	< 0.2	0.2 - 0.3	0.5 - 1.0	1.0 - 2.0	> 2.0	
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	
	$\epsilon(f_0)$ [Hz] $\theta(f_0)$ for $s_A(f_0)$					0.05 f ₀ 1.58	
	$\epsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀	

(vedi D.Albarello et alii "Il contributo della sismica passiva nella microzonazione di due macroaree abruzzesi" - Boll.Geofis.Teor.Appl.)

processing and interpretations. SESAME European research project, deliverable D23.12, 2005.]

[specifiche da Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations - measurements,

1. Stazionarietà temporale	ok
2. Isotropia	no
3. Assenza disturbi elettromagnetici	ok
4. Plausibilità fisica	ok
5. Robustezza statistica (*)	no
6. Durata	ok

CLASSE	С
SOTTOCLASSE	

Valutazioni qualitative

profon. contra	asto:	10-20 m
	[deci	ne di metri]
contrasto:		ALTO